These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26207507)

  • 21. Rheological signatures in limit cycle behaviour of dilute, active, polar liquid crystalline polymers in steady shear.
    Forest MG; Phuworawong P; Wang Q; Zhou R
    Philos Trans A Math Phys Eng Sci; 2014 Nov; 372(2029):. PubMed ID: 25332387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A combined rheometry and imaging study of viscosity reduction in bacterial suspensions.
    Martinez VA; Clément E; Arlt J; Douarche C; Dawson A; Schwarz-Linek J; Creppy AK; Škultéty V; Morozov AN; Auradou H; Poon WCK
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2326-2331. PubMed ID: 31964833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flow regime transitions in dense non-Brownian suspensions: rheology, microstructural characterization, and constitutive modeling.
    Ness C; Sun J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012201. PubMed ID: 25679613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of pH on deagglomeration and rheology/morphology of aqueous suspensions of goethite nanopowder.
    Ding P; Pacek AW
    J Colloid Interface Sci; 2008 Sep; 325(1):165-72. PubMed ID: 18571662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic mechanical properties of suspensions of micellar casein particles.
    Panouillé M; Benyahia L; Durand D; Nicolai T
    J Colloid Interface Sci; 2005 Jul; 287(2):468-75. PubMed ID: 15925612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transition from the viscous to inertial regime in dense suspensions.
    Trulsson M; Andreotti B; Claudin P
    Phys Rev Lett; 2012 Sep; 109(11):118305. PubMed ID: 23005688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation.
    Philippe AM; Baravian C; Bezuglyy V; Angilella JR; Meneau F; Bihannic I; Michot LJ
    Langmuir; 2013 Apr; 29(17):5315-24. PubMed ID: 23544905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena.
    Nechyporchuk O; Belgacem MN; Pignon F
    Carbohydr Polym; 2014 Nov; 112():432-9. PubMed ID: 25129764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flow properties of freshly prepared ettringite suspensions in water at 25 degrees C.
    Vladu CM; Hall C; Maitland GC
    J Colloid Interface Sci; 2006 Feb; 294(2):466-72. PubMed ID: 16112125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shear thickening of corn starch suspensions: does concentration matter?
    Crawford NC; Popp LB; Johns KE; Caire LM; Peterson BN; Liberatore MW
    J Colloid Interface Sci; 2013 Apr; 396():83-9. PubMed ID: 23484772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Survival of Escherichia coli cells during storage in suspensions of varying concentrations].
    Vakhitov TIa; Petrov LN
    Mikrobiologiia; 1992; 61(6):1087-95. PubMed ID: 1297043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase stability-induced complex rheological behaviour of galactomannan and maltodextrin mixtures.
    Tha Goh KK; Mei Wee MS; Hemar Y
    Food Funct; 2013 Apr; 4(4):627-34. PubMed ID: 23392341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Living bacteria rheology: population growth, aggregation patterns, and collective behavior under different shear flows.
    Patrício P; Almeida PL; Portela R; Sobral RG; Grilo IR; Cidade T; Leal CR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022720. PubMed ID: 25215771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shear thickening of cornstarch suspensions as a reentrant jamming transition.
    Fall A; Huang N; Bertrand F; Ovarlez G; Bonn D
    Phys Rev Lett; 2008 Jan; 100(1):018301. PubMed ID: 18232829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rheology of a dilute suspension of liquid-filled elastic capsules.
    Bagchi P; Kalluri RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056320. PubMed ID: 20866335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional model for the effective viscosity of bacterial suspensions.
    Haines BM; Sokolov A; Aranson IS; Berlyand L; Karpeev DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041922. PubMed ID: 19905357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liquid-to-solid transition of concentrated suspensions under complex transient shear histories.
    Guo Y; Yu W; Xu Y; Zhou C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061404. PubMed ID: 20365172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.
    Cui Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031911. PubMed ID: 21517529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shear viscosity of phase-separating polymer blends with viscous asymmetry.
    Jeon HS; Hobbie EK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):061403. PubMed ID: 11415100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Viscosity of bacterial suspensions: hydrodynamic interactions and self-induced noise.
    Ryan SD; Haines BM; Berlyand L; Ziebert F; Aranson IS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):050904. PubMed ID: 21728480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.