BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26207812)

  • 21. An Exobasidium Disease of Fruit and Leaves of Highbush Blueberry.
    Cline WO
    Plant Dis; 1998 Sep; 82(9):1064. PubMed ID: 30856844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptome analysis identifies genes related to the waxy coating on blueberry fruit in two northern-adapted rabbiteye breeding populations.
    Qi X; Ogden EL; Die JV; Ehlenfeldt MK; Polashock JJ; Darwish O; Alkharouf N; Rowland LJ
    BMC Plant Biol; 2019 Oct; 19(1):460. PubMed ID: 31711416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. First Report of Blueberry scorch virus in Cranberry in Canada and the United States.
    Wegener LA; Punja ZK; Martin RR
    Plant Dis; 2004 Apr; 88(4):427. PubMed ID: 30812637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic diversity of Armillaria spp. infecting highbush blueberry in northern Italy (Trentino region).
    Prodorutti D; Vanblaere T; Gobbin D; Pellegrini A; Gessler C; Pertot I
    Phytopathology; 2009 Jun; 99(6):651-8. PubMed ID: 19453223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Admixture Analysis Using Genotyping-by-Sequencing Reveals Genetic Relatedness and Parental Lineage Distribution in Highbush Blueberry Genotypes and Cross Derivatives.
    Kulkarni KP; Vorsa N; Natarajan P; Elavarthi S; Iorizzo M; Reddy UK; Melmaiee K
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of blueberry stunt phytoplasma in Eastern Canada using cpn60-based molecular diagnostic assays.
    Hammond C; Pérez-López E; Town J; Vincent C; Moreau D; Dumonceaux T
    Sci Rep; 2021 Nov; 11(1):22118. PubMed ID: 34764366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptome analysis and annotation: SNPs identified from single copy annotated unigenes of three polyploid blueberry crops.
    Wang Y; Shahid MQ; Ghouri F; Ercişli S; Baloch FS; Nie F
    PLoS One; 2019; 14(4):e0216299. PubMed ID: 31034501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomic insight into the developmental history of southern highbush blueberry populations.
    Nishiyama S; Fujikawa M; Yamane H; Shirasawa K; Babiker E; Tao R
    Heredity (Edinb); 2021 Jan; 126(1):194-205. PubMed ID: 32873965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery of Known and Novel Viruses in Wild and Cultivated Blueberry in Florida through Viral Metagenomic Approaches.
    Saad N; Olmstead JW; Varsani A; Polston JE; Jones JB; Folimonova SY; Harmon PF
    Viruses; 2021 Jun; 13(6):. PubMed ID: 34207047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impact of cultivation systems on the nutritional and phytochemical content, and microbiological contamination of highbush blueberry.
    Ochmian I; Błaszak M; Lachowicz S; Piwowarczyk R
    Sci Rep; 2020 Oct; 10(1):16696. PubMed ID: 33028946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential Impact of Populations Drift on Botrytis Occurrence and Resistance to Multi- and Single-Site Fungicides in Florida Southern Highbush Blueberry Fields.
    Amiri A; Zuniga AI; Peres NA
    Plant Dis; 2018 Nov; 102(11):2142-2148. PubMed ID: 30169135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abundance and Diversity of Wild Bees (Hymenoptera: Apoidea) Found in Lowbush Blueberry Growing Regions of Downeast Maine.
    Bushmann SL; Drummond FA
    Environ Entomol; 2015 Aug; 44(4):975-89. PubMed ID: 26314043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the Phylogenetic Diversity of
    Blagojević J; Aleksić G; Vučurović I; Starović M; Ristić D
    Phytopathology; 2024 Jun; 114(6):1333-1345. PubMed ID: 38015417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inoculum source dependent effects of ericoid, mycorrhizal fungi on flowering and reproductive success in highbush blueberry (Vaccinium corymbosum).
    O'Neill E; Brody AK; Ricketts T
    PLoS One; 2023; 18(4):e0284631. PubMed ID: 37075057
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phylogeography of the Solanaceae-infecting Basidiomycota fungus Rhizoctonia solani AG-3 based on sequence analysis of two nuclear DNA loci.
    Ceresini PC; Shew HD; James TY; Vilgalys RJ; Cubeta MA
    BMC Evol Biol; 2007 Sep; 7():163. PubMed ID: 17854492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and Characterization of
    Ali S; Hildebrand PD; Renderos WE; Abbasi PA
    Phytopathology; 2021 Sep; 111(9):1560-1570. PubMed ID: 33439032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses.
    Rutter WB; Salcedo A; Akhunova A; He F; Wang S; Liang H; Bowden RL; Akhunov E
    BMC Genomics; 2017 Apr; 18(1):291. PubMed ID: 28403814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression of Escherichia coli O157:H7 by Dung Beetles (Coleoptera: Scarabaeidae) using the lowbush blueberry agroecosystem as a model system.
    Jones MS; Tadepalli S; Bridges DF; Wu VC; Drummond F
    PLoS One; 2015; 10(4):e0120904. PubMed ID: 25849430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First report of
    Castro JF; Millas P; Cisterna-Oyarce V; Carrasco J; Santelices C; Muñoz-Reyes V; Guerra M; Barra-Bucarei L; France A
    Plant Dis; 2022 Aug; ():. PubMed ID: 36044646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Procyanidin, anthocyanin, and chlorogenic acid contents of highbush and lowbush blueberries.
    Rodriguez-Mateos A; Cifuentes-Gomez T; Tabatabaee S; Lecras C; Spencer JP
    J Agric Food Chem; 2012 Jun; 60(23):5772-8. PubMed ID: 22175691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.