These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 26207850)
21. Adjoint sensitivity analysis of ozone nonattainment over the continental United States. Hakami A; Seinfeld JH; Chai T; Tang Y; Carmichael GR; Sandu A Environ Sci Technol; 2006 Jun; 40(12):3855-64. PubMed ID: 16830553 [TBL] [Abstract][Full Text] [Related]
22. Contributions of regional air pollutant emissions to ozone and fine particulate matter-related mortalities in eastern U.S. urban areas. Hou X; Strickland MJ; Liao KJ Environ Res; 2015 Feb; 137():475-84. PubMed ID: 25701729 [TBL] [Abstract][Full Text] [Related]
23. Accounting for spatial variation of ozone productivity in NOx emission trading. Nobel CE; McDonald-Buller EC; Kimura Y; Allen DT Environ Sci Technol; 2001 Nov; 35(22):4397-407. PubMed ID: 11757593 [TBL] [Abstract][Full Text] [Related]
24. Simultaneously mitigating near-term climate change and improving human health and food security. Shindell D; Kuylenstierna JC; Vignati E; van Dingenen R; Amann M; Klimont Z; Anenberg SC; Muller N; Janssens-Maenhout G; Raes F; Schwartz J; Faluvegi G; Pozzoli L; Kupiainen K; Höglund-Isaksson L; Emberson L; Streets D; Ramanathan V; Hicks K; Oanh NT; Milly G; Williams M; Demkine V; Fowler D Science; 2012 Jan; 335(6065):183-9. PubMed ID: 22246768 [TBL] [Abstract][Full Text] [Related]
25. Optimal Ozone Control with Inclusion of Spatiotemporal Marginal Damages and Electricity Demand. Mesbah SM; Hakami A; Schott S Environ Sci Technol; 2015 Jul; 49(13):7870-8. PubMed ID: 26053406 [TBL] [Abstract][Full Text] [Related]
26. Weekday versus weekend activity patterns for ozone precursor emissions in California's South Coast Air Basin. Chinkin LR; Coe DL; Funk TH; Hafner HR; Roberts PT; Ryan PA; Lawson DR J Air Waste Manag Assoc; 2003 Jul; 53(7):829-43. PubMed ID: 12880071 [TBL] [Abstract][Full Text] [Related]
27. Sensitivity analysis of ground-level ozone concentration to emission changes in two urban regions of southeast Texas. Lin CJ; Ho TC; Chu HW; Yang H; Chandru S; Krishnarajanagar N; Chiou P; Hopper JR J Environ Manage; 2005 Jun; 75(4):315-23. PubMed ID: 15854725 [TBL] [Abstract][Full Text] [Related]
28. Source attribution of health benefits from air pollution abatement in Canada and the United States: an adjoint sensitivity analysis. Pappin AJ; Hakami A Environ Health Perspect; 2013 May; 121(5):572-9. PubMed ID: 23434744 [TBL] [Abstract][Full Text] [Related]
29. Management of tropospheric ozone by reducing methane emissions. West JJ; Fiore AM Environ Sci Technol; 2005 Jul; 39(13):4685-91. PubMed ID: 16053064 [TBL] [Abstract][Full Text] [Related]
30. Modeling analyses of the effects of changes in nitrogen oxides emissions from the electric power sector on ozone levels in the eastern United States. Gégo E; Gilliland A; Godowitch J; Rao ST; Porter PS; Hogrefe C J Air Waste Manag Assoc; 2008 Apr; 58(4):580-8. PubMed ID: 18422044 [TBL] [Abstract][Full Text] [Related]
31. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change. Campbell P; Zhang Y; Yan F; Lu Z; Streets D Environ Pollut; 2018 Jul; 238():918-930. PubMed ID: 29684896 [TBL] [Abstract][Full Text] [Related]
32. Using air quality modeling to study source-receptor relationships between nitrogen oxides emissions and ozone exposures over the United States. Tong DQ; Muller NZ; Kan H; Mendelsohn RO Environ Int; 2009 Nov; 35(8):1109-17. PubMed ID: 19656569 [TBL] [Abstract][Full Text] [Related]
33. Source apportionment and health effect of NOx over the Pearl River Delta region in southern China. Lu X; Yao T; Li Y; Fung JCH; Lau AKH Environ Pollut; 2016 May; 212():135-146. PubMed ID: 26845361 [TBL] [Abstract][Full Text] [Related]
34. Air quality in Yanbu, Saudi Arabia. Khalil MA; Butenhoff CL; Porter WC; Almazroui M; Alkhalaf A; Al-Sahafi MS J Air Waste Manag Assoc; 2016 Apr; 66(4):341-55. PubMed ID: 26671649 [TBL] [Abstract][Full Text] [Related]
35. CABOT-O Bielen DA; Macpherson AJ; Simon H; Fann N Environ Sci Technol; 2020 Nov; 54(21):13370-13378. PubMed ID: 33086005 [TBL] [Abstract][Full Text] [Related]
36. Recent increases in nitrogen oxide (NOx) emissions from coal-fired electric generating units equipped with selective catalytic reduction. McNevin TF J Air Waste Manag Assoc; 2016 Jan; 66(1):66-75. PubMed ID: 26563500 [TBL] [Abstract][Full Text] [Related]
37. Impacts of Soil NO Sha T; Ma X; Zhang H; Janechek N; Wang Y; Wang Y; Castro García L; Jenerette GD; Wang J Environ Sci Technol; 2021 May; 55(10):7113-7122. PubMed ID: 33576617 [TBL] [Abstract][Full Text] [Related]
38. Health burdens of surface ozone in the UK for a range of future scenarios. Heal MR; Heaviside C; Doherty RM; Vieno M; Stevenson DS; Vardoulakis S Environ Int; 2013 Nov; 61():36-44. PubMed ID: 24096040 [TBL] [Abstract][Full Text] [Related]
39. An environmental decision-making tool for evaluating ground-level ozone-related health effects. Sanhueza PA; Reed GD; Davis WT; Miller TL J Air Waste Manag Assoc; 2003 Dec; 53(12):1448-59. PubMed ID: 14700132 [TBL] [Abstract][Full Text] [Related]
40. A direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard. Simon H; Baker KR; Akhtar F; Napelenok SL; Possiel N; Wells B; Timin B Environ Sci Technol; 2013 Mar; 47(5):2304-13. PubMed ID: 23256562 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]