BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 26207925)

  • 1. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing.
    Mohammadi S; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M
    Analyst; 2015 Oct; 140(19):6493-9. PubMed ID: 26207925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine.
    Zhang H; Smith E; Zhang W; Zhou A
    Biomed Microdevices; 2019 Jun; 21(3):48. PubMed ID: 31183565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis.
    de Oliveira RAG; Camargo F; Pesquero NC; Faria RC
    Anal Chim Acta; 2017 Mar; 957():40-46. PubMed ID: 28107832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique.
    Wu P; Zhang C
    Lab Chip; 2015 Mar; 15(6):1598-608. PubMed ID: 25656508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine.
    Yao Y; Zhang C
    Biomed Microdevices; 2016 Oct; 18(5):92. PubMed ID: 27628060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inkjet-printed microfluidic multianalyte chemical sensing paper.
    Abe K; Suzuki K; Citterio D
    Anal Chem; 2008 Sep; 80(18):6928-34. PubMed ID: 18698798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps.
    Dornelas KL; Dossi N; Piccin E
    Anal Chim Acta; 2015 Feb; 858():82-90. PubMed ID: 25597806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of paper-based microfluidic sensors by printing.
    Li X; Tian J; Garnier G; Shen W
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):564-70. PubMed ID: 20097546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screen printed paper-based diagnostic devices with polymeric inks.
    Sun JY; Cheng CM; Liao YC
    Anal Sci; 2015; 31(3):145-51. PubMed ID: 25765267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Multilayered paper- and thread/paper-based microfluidic devices for bioassays.
    Neris NM; Guevara RD; Gonzalez A; Gomez FA
    Electrophoresis; 2019 Jan; 40(2):296-303. PubMed ID: 30383293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Printing silicone-based hydrophobic barriers on paper for microfluidic assays using low-cost ink jet printers.
    Rajendra V; Sicard C; Brennan JD; Brook MA
    Analyst; 2014 Dec; 139(24):6361-5. PubMed ID: 25353713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices.
    Gabriel EF; Garcia PT; Cardoso TM; Lopes FM; Martins FT; Coltro WK
    Analyst; 2016 Aug; 141(15):4749-56. PubMed ID: 27272206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper.
    Bruzewicz DA; Reches M; Whitesides GM
    Anal Chem; 2008 May; 80(9):3387-92. PubMed ID: 18333627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T-shirt ink for one-step screen-printing of hydrophobic barriers for 2D- and 3D-microfluidic paper-based analytical devices.
    Sitanurak J; Fukana N; Wongpakdee T; Thepchuay Y; Ratanawimarnwong N; Amornsakchai T; Nacapricha D
    Talanta; 2019 Dec; 205():120113. PubMed ID: 31450420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication.
    Sameenoi Y; Nongkai PN; Nouanthavong S; Henry CS; Nacapricha D
    Analyst; 2014 Dec; 139(24):6580-8. PubMed ID: 25360590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemiluminescence detection in microfluidic cloth-based analytical devices.
    Guan W; Liu M; Zhang C
    Biosens Bioelectron; 2016 Jan; 75():247-53. PubMed ID: 26319168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing.
    Wang S; Ge L; Song X; Yu J; Ge S; Huang J; Zeng F
    Biosens Bioelectron; 2012 Jan; 31(1):212-8. PubMed ID: 22051546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks.
    Nuchtavorn N; Macka M
    Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.