BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 26207925)

  • 21. Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems.
    Wu J; Wang R; Yu H; Li G; Xu K; Tien NC; Roberts RC; Li D
    Lab Chip; 2015 Feb; 15(3):690-5. PubMed ID: 25412449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Raman Characterization of Nanoparticle Transport in Microfluidic Paper-Based Analytical Devices (μPADs).
    Lahr RH; Wallace GC; Vikesland PJ
    ACS Appl Mater Interfaces; 2015 May; 7(17):9139-46. PubMed ID: 25853463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Paper Capillary Enables Effective Sampling for Microfluidic Paper Analytical Devices.
    Shangguan JW; Liu Y; Wang S; Hou YX; Xu BY; Xu JJ; Chen HY
    ACS Sens; 2018 Jul; 3(7):1416-1423. PubMed ID: 29873481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid detection of Cu(2+) by a paper-based microfluidic device coated with bovine serum albumin (BSA)-Au nanoclusters.
    Fang X; Zhao Q; Cao H; Liu J; Guan M; Kong J
    Analyst; 2015 Nov; 140(22):7823-6. PubMed ID: 26462444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzyme Chemotaxis on Paper-based Devices.
    Ilacas GC; Basa A; Sen A; Gomez FA
    Anal Sci; 2018; 34(1):115-119. PubMed ID: 29321451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sample pre-concentration with high enrichment factors at a fixed location in paper-based microfluidic devices.
    Yeh SH; Chou KH; Yang RJ
    Lab Chip; 2016 Mar; 16(5):925-31. PubMed ID: 26876347
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring.
    de Castro LF; de Freitas SV; Duarte LC; de Souza JAC; Paixão TRLC; Coltro WKT
    Anal Bioanal Chem; 2019 Jul; 411(19):4919-4928. PubMed ID: 30941478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel method for fabrication of paper-based microfluidic devices using BSA-ink.
    Walia S; Bhatnagar I; Liu J; Mitra SK; Asthana A
    Int J Biol Macromol; 2021 Dec; 193(Pt B):1617-1622. PubMed ID: 34774599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A three-dimensional electrochemical paper-based analytical device for low-cost diagnostics.
    Punjiya M; Moon CH; Matharu Z; Rezaei Nejad H; Sonkusale S
    Analyst; 2018 Feb; 143(5):1059-1064. PubMed ID: 29410987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors.
    Delaney JL; Hogan CF; Tian J; Shen W
    Anal Chem; 2011 Feb; 83(4):1300-6. PubMed ID: 21247195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing.
    Dungchai W; Chailapakul O; Henry CS
    Analyst; 2011 Jan; 136(1):77-82. PubMed ID: 20871884
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucose biosensor based on disposable electrochemical paper-based transducers fully fabricated by screen-printing.
    Lamas-Ardisana PJ; Martínez-Paredes G; Añorga L; Grande HJ
    Biosens Bioelectron; 2018 Jun; 109():8-12. PubMed ID: 29522970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a paper-based carbon nanotube sensing microfluidic device for biological detection.
    Yang SI; Lei KF; Tsai SW; Hsu HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():168-71. PubMed ID: 24109651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Equipment-Free Detection of K
    Soda Y; Citterio D; Bakker E
    ACS Sens; 2019 Mar; 4(3):670-677. PubMed ID: 30702271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distance-Based Tear Lactoferrin Assay on Microfluidic Paper Device Using Interfacial Interactions on Surface-Modified Cellulose.
    Yamada K; Henares TG; Suzuki K; Citterio D
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24864-75. PubMed ID: 26488371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of paper-based microfluidic analytical device for iron assay using photomask printed with 3D printer for fabrication of hydrophilic and hydrophobic zones on paper by photolithography.
    Asano H; Shiraishi Y
    Anal Chim Acta; 2015 Jul; 883():55-60. PubMed ID: 26088776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer.
    Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW
    Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Review on Microfluidic Paper-Based Analytical Devices for Glucose Detection.
    Liu S; Su W; Ding X
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27941634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bio-sample detection on paper-based devices with inkjet printer-sprayed reagents.
    Liang WH; Chu CH; Yang RJ
    Talanta; 2015 Dec; 145():6-11. PubMed ID: 26459437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.