BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 26207925)

  • 61. Text-Displaying Colorimetric Paper-Based Analytical Device.
    Yamada K; Suzuki K; Citterio D
    ACS Sens; 2017 Aug; 2(8):1247-1254. PubMed ID: 28809488
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biosurface engineering through ink jet printing.
    Khan MS; Fon D; Li X; Tian J; Forsythe J; Garnier G; Shen W
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):441-7. PubMed ID: 19879112
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks.
    Cardoso TMG; de Souza FR; Garcia PT; Rabelo D; Henry CS; Coltro WKT
    Anal Chim Acta; 2017 Jun; 974():63-68. PubMed ID: 28535882
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices.
    Yang X; Forouzan O; Brown TP; Shevkoplyas SS
    Lab Chip; 2012 Jan; 12(2):274-80. PubMed ID: 22094609
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay.
    Lu Y; Shi W; Jiang L; Qin J; Lin B
    Electrophoresis; 2009 May; 30(9):1497-500. PubMed ID: 19340829
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect transistors.
    Tian R; Regonda S; Gao J; Liu Y; Hu W
    Lab Chip; 2011 Jun; 11(11):1952-61. PubMed ID: 21505681
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Paper-based microfluidic devices for glucose assays employing a metal-organic framework (MOF).
    Ilacas GC; Basa A; Nelms KJ; Sosa JD; Liu Y; Gomez FA
    Anal Chim Acta; 2019 May; 1055():74-80. PubMed ID: 30782373
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A novel combination of quick response code and microfluidic paper-based analytical devices for rapid and quantitative detection.
    Wang T; Xu G; Wu W; Wang X; Chen X; Zhou S; You F
    Biomed Microdevices; 2018 Sep; 20(3):79. PubMed ID: 30187186
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection.
    Masrie M; Majlis BY; Yunas J
    Biomed Mater Eng; 2014; 24(6):1951-8. PubMed ID: 25226891
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Flow controllable three-dimensional paper-based microfluidic analytical devices fabricated by 3D printing technology.
    Fu X; Xia B; Ji B; Lei S; Zhou Y
    Anal Chim Acta; 2019 Aug; 1065():64-70. PubMed ID: 31005152
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microfluidic Paper-based Analytical Devices (μPADs): Miniaturization and Enzyme Storage Studies.
    Ilacas G; Gomez FA
    Anal Sci; 2019 Apr; 35(4):379-384. PubMed ID: 30531127
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Recent Advances In the development of enzymatic paper-based microfluidic biosensors.
    Aghababaie M; Foroushani ES; Changani Z; Gunani Z; Mobarakeh MS; Hadady H; Khedri M; Maleki R; Asadnia M; Razmjou A
    Biosens Bioelectron; 2023 Apr; 226():115131. PubMed ID: 36804663
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A pump-free paper/PDMS hybrid microfluidic chip for bacteria enrichment and fast detection.
    Zhu Z; Lv Z; Wang L; Tan H; Xu Y; Li S; Chen L
    Talanta; 2024 Aug; 275():126155. PubMed ID: 38678928
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of passivation on the sensitivity and stability of pentacene transistor sensors in aqueous media.
    Khan HU; Jang J; Kim JJ; Knoll W
    Biosens Bioelectron; 2011 Jun; 26(10):4217-21. PubMed ID: 21546238
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A novel, disposable, screen-printed amperometric biosensor for glucose in serum fabricated using a water-based carbon ink.
    Crouch E; Cowell DC; Hoskins S; Pittson RW; Hart JP
    Biosens Bioelectron; 2005 Nov; 21(5):712-8. PubMed ID: 16242609
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Inkjet-printed paperfluidic immuno-chemical sensing device.
    Abe K; Kotera K; Suzuki K; Citterio D
    Anal Bioanal Chem; 2010 Sep; 398(2):885-93. PubMed ID: 20652543
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An Enclosed Paper Microfluidic Chip as a Sample Preconcentrator Based on Ion Concentration Polarization.
    Liu N; Phan DT; Lew WS
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1392-1399. PubMed ID: 28792905
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Development of an automated wax-printed paper-based lateral flow device for alpha-fetoprotein enzyme-linked immunosorbent assay.
    Preechakasedkit P; Siangproh W; Khongchareonporn N; Ngamrojanavanich N; Chailapakul O
    Biosens Bioelectron; 2018 Apr; 102():27-32. PubMed ID: 29107857
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fabrication of paper microfluidic devices using a toner laser printer.
    Ng JS; Hashimoto M
    RSC Adv; 2020 Aug; 10(50):29797-29807. PubMed ID: 35518222
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Monitoring liquid transport and chemical composition in lab on a chip systems using ion sensitive FET devices.
    Truman P; Uhlmann P; Stamm M
    Lab Chip; 2006 Sep; 6(9):1220-8. PubMed ID: 16929402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.