These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26208039)

  • 81. Structural elements of the young normal human pulp.
    Avery JK
    Oral Surg Oral Med Oral Pathol; 1971 Jul; 32(1):113-25. PubMed ID: 5281544
    [No Abstract]   [Full Text] [Related]  

  • 82. PiggyBac mediated multiplex gene transfer in mouse embryonic stem cell.
    Lu X; Huang W
    PLoS One; 2014; 9(12):e115072. PubMed ID: 25517991
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Robust method for TALEN-edited correction of pF508del in patient-specific induced pluripotent stem cells.
    Camarasa MV; Gálvez VM
    Stem Cell Res Ther; 2016 Feb; 7():26. PubMed ID: 26861665
    [TBL] [Abstract][Full Text] [Related]  

  • 84. [Integration sites and their characteristic analysis of piggyBac transposon in cattle genome].
    Du XH; Gao X; Zhang LP; Gao HJ; Li JY; Xu SZ
    Yi Chuan; 2013 Jun; 35(6):771-7. PubMed ID: 23774022
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Transposon-generated 'knock-out' and 'knock-in' gene-targeting constructs for use in mice.
    Westphal CH; Leder P
    Curr Biol; 1997 Jul; 7(7):530-3. PubMed ID: 9210379
    [TBL] [Abstract][Full Text] [Related]  

  • 86. PiggyBac transposon system with polymeric gene carrier transfected into human T cells.
    Zheng Y; Li ZR; Yue R; Fu YL; Liu ZY; Feng HY; Li JG; Han SY
    Am J Transl Res; 2019; 11(11):7126-7136. PubMed ID: 31814915
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Application of iPS cells in dental bioengineering and beyond.
    Liu P; Zhang Y; Chen S; Cai J; Pei D
    Stem Cell Rev Rep; 2014 Oct; 10(5):663-70. PubMed ID: 24917330
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Teeth and dental pulp tissue: the origin for generating induced pluripotent stem cells?
    Chien KH; Chiou SH
    J Chin Med Assoc; 2014 Dec; 77(12):605-7. PubMed ID: 25456041
    [No Abstract]   [Full Text] [Related]  

  • 89. RNA analysis based on a small number of manually isolated fixed cells (RNA-snMIFxC) to profile stem cells from human deciduous tooth-derived dental pulp cells.
    Inada E; Saitoh I; Kubota N; Iwase Y; Kiyokawa Y; Noguchi H; Yamasaki Y; Sato M
    Biol Proced Online; 2021 Jun; 23(1):12. PubMed ID: 34116635
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Single-Cell-State Culture of Human Pluripotent Stem Cells Increases Transfection Efficiency.
    Nii T; Kohara H; Marumoto T; Sakuma T; Yamamoto T; Tani K
    Biores Open Access; 2016; 5(1):127-36. PubMed ID: 27257519
    [TBL] [Abstract][Full Text] [Related]  

  • 91. In Vitro Transfection with and Expression of CCN Family of Genes.
    Janune D; Takigawa M
    Methods Mol Biol; 2017; 1489():107-113. PubMed ID: 27734370
    [TBL] [Abstract][Full Text] [Related]  

  • 92. In vitro and in vivo analysis of human fibroblast reprogramming and multipotency.
    Pang R; Zhu X; Geng J; Zhang Y; Wang Q; He J; Wang J; Zhu G; Xiong F; Zhang C; Ruan G; Pan X
    Cell Mol Biol Lett; 2015 Sep; 20(3):404-17. PubMed ID: 26208388
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The piggyBac-Based Gene Delivery System Can Confer Successful Production of Cloned Porcine Blastocysts with Multigene Constructs.
    Sato M; Maeda K; Koriyama M; Inada E; Saitoh I; Miura H; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S; Miyoshi K
    Int J Mol Sci; 2016 Aug; 17(9):. PubMed ID: 27589724
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Low-cost generation of Good Manufacturing Practice-grade CD19-specific chimeric antigen receptor-expressing T cells using piggyBac gene transfer and patient-derived materials.
    Ramanayake S; Bilmon I; Bishop D; Dubosq MC; Blyth E; Clancy L; Gottlieb D; Micklethwaite K
    Cytotherapy; 2015 Sep; 17(9):1251-67. PubMed ID: 26212611
    [TBL] [Abstract][Full Text] [Related]  

  • 95. piggyBac-ing models and new therapeutic strategies.
    Woodard LE; Wilson MH
    Trends Biotechnol; 2015 Sep; 33(9):525-33. PubMed ID: 26211958
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Effect of three different root canal sealants on human dental pulp stem cells.
    Alfahlawy A; Selim MAA; Hassan HY
    Sci Rep; 2024 Oct; 14(1):23937. PubMed ID: 39397052
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The Role of Genetically Modified Human Feeder Cells in Maintaining the Integrity of Primary Cultured Human Deciduous Dental Pulp Cells.
    Ibano N; Inada E; Otake S; Kiyokawa Y; Sakata K; Sato M; Kubota N; Noguchi H; Iwase Y; Murakami T; Sawami T; Kakihara Y; Maeda T; Terunuma M; Terao Y; Saitoh I
    J Clin Med; 2022 Oct; 11(20):. PubMed ID: 36294410
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Potential of transposon-mediated cellular reprogramming towards cell-based therapies.
    Kumar D; Anand T; Talluri TR; Kues WA
    World J Stem Cells; 2020 Jul; 12(7):527-544. PubMed ID: 32843912
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Adeno-Associated Virus-Based Gene Therapy for Lifelong Correction of Genetic Disease.
    Brommel CM; Cooney AL; Sinn PL
    Hum Gene Ther; 2020 Sep; 31(17-18):985-995. PubMed ID: 32718227
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    Inada E; Saitoh I; Kubota N; Iwase Y; Kiyokawa Y; Shibasaki S; Noguchi H; Yamasaki Y; Sato M
    Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31623314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.