These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26208259)

  • 1. Theoretical Optimization of Stimulation Strategies for a Directionally Segmented Deep Brain Stimulation Electrode Array.
    Xiao Y; Peña E; Johnson MD
    IEEE Trans Biomed Eng; 2016 Feb; 63(2):359-71. PubMed ID: 26208259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle swarm optimization for programming deep brain stimulation arrays.
    Peña E; Zhang S; Deyo S; Xiao Y; Johnson MD
    J Neural Eng; 2017 Feb; 14(1):016014. PubMed ID: 28068291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways.
    Peña E; Zhang S; Patriat R; Aman JE; Vitek JL; Harel N; Johnson MD
    J Neural Eng; 2018 Dec; 15(6):066020. PubMed ID: 30211697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of electrode design on the volume of tissue activated during deep brain stimulation.
    Butson CR; McIntyre CC
    J Neural Eng; 2006 Mar; 3(1):1-8. PubMed ID: 16510937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes.
    Anderson DN; Osting B; Vorwerk J; Dorval AD; Butson CR
    J Neural Eng; 2018 Apr; 15(2):026005. PubMed ID: 29235446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial steering of deep brain stimulation volumes using a novel lead design.
    Martens HCF; Toader E; Decré MMJ; Anderson DJ; Vetter R; Kipke DR; Baker KB; Johnson MD; Vitek JL
    Clin Neurophysiol; 2011 Mar; 122(3):558-566. PubMed ID: 20729143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Lead Design for Modulation and Sensing of Deep Brain Structures.
    Connolly AT; Vetter RJ; Hetke JF; Teplitzky BA; Kipke DR; Pellinen DS; Anderson DJ; Baker KB; Vitek JL; Johnson MD
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):148-57. PubMed ID: 26529747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing deep brain stimulation parameter selection with detailed models of the electrode-tissue interface.
    McIntyre CC; Butson CR; Maks CB; Noecker AM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():893-5. PubMed ID: 17946871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved stereotactic procedure enhances the accuracy of deep brain stimulation electrode implantation in non-human primates.
    Chen L; Li N; Gao L; Yang C; Fang W; Wang XL; Gao GD
    Int J Neurosci; 2015 May; 125(5):380-9. PubMed ID: 24985045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording.
    Lai HY; Liao LD; Lin CT; Hsu JH; He X; Chen YY; Chang JY; Chen HF; Tsang S; Shih YY
    J Neural Eng; 2012 Jun; 9(3):036001. PubMed ID: 22488106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep brain stimulation induces sparse distributions of locally modulated neuronal activity.
    Xiao Y; Agnesi F; Bello EM; Zhang S; Vitek JL; Johnson MD
    Sci Rep; 2018 Feb; 8(1):2062. PubMed ID: 29391468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multitarget, dual-electrode deep brain stimulation of the thalamus and subthalamic area for treatment of Holmes' tremor.
    Kobayashi K; Katayama Y; Oshima H; Watanabe M; Sumi K; Obuchi T; Fukaya C; Yamamoto T
    J Neurosurg; 2014 May; 120(5):1025-32. PubMed ID: 24605838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.
    Walckiers G; Fuchs B; Thiran JP; Mosig JR; Pollo C
    J Neurosci Methods; 2010 Jan; 186(1):90-6. PubMed ID: 19895845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes.
    Howell B; Huynh B; Grill WM
    J Neural Eng; 2015 Aug; 12(4):046030. PubMed ID: 26170244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subthalamic stimulation for Parkinson disease: determination of electrode location necessary for clinical efficacy.
    McClelland S; Ford B; Senatus PB; Winfield LM; Du YE; Pullman SL; Yu Q; Frucht SJ; McKhann GM; Goodman RR
    Neurosurg Focus; 2005 Nov; 19(5):E12. PubMed ID: 16398462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation.
    Lempka SF; Johnson MD; Miocinovic S; Vitek JL; McIntyre CC
    Clin Neurophysiol; 2010 Dec; 121(12):2128-33. PubMed ID: 20493764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating pad-electrodes with high-definition arrays in transcranial electric stimulation.
    Kempe R; Huang Y; Parra LC
    J Neural Eng; 2014 Apr; 11(2):026003. PubMed ID: 24503644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo impedance spectroscopy of deep brain stimulation electrodes.
    Lempka SF; Miocinovic S; Johnson MD; Vitek JL; McIntyre CC
    J Neural Eng; 2009 Aug; 6(4):046001. PubMed ID: 19494421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.