These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26208295)

  • 1. Oscillational motion properties of bacteria and polystyrene particles on a positively polarized substrate surface.
    Shim S; Kang H; Ahn KH; Yoon J
    Colloids Surf B Biointerfaces; 2015 Oct; 134():240-6. PubMed ID: 26208295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of shear on initial bacterial attachment in slow flowing systems.
    Wang H; Sodagari M; Ju LK; Zhang Newby BM
    Colloids Surf B Biointerfaces; 2013 Sep; 109():32-9. PubMed ID: 23603040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adhesion of nano-sized particles to the surface of bacteria: mechanistic study with the extended DLVO theory.
    Hwang G; Ahn IS; Mhin BJ; Kim JY
    Colloids Surf B Biointerfaces; 2012 Sep; 97():138-44. PubMed ID: 22609594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single Layer Deposition of Polystyrene Particles onto Planar Polydimethylsiloxane Substrates.
    Mustin B; Stoeber B
    Langmuir; 2016 Jan; 32(1):88-101. PubMed ID: 26646665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretation of adhesion behaviors between bacteria and modified basalt fiber by surface thermodynamics and extended DLVO theory.
    Zhang X; Zhou X; Xi H; Sun J; Liang X; Wei J; Xiao X; Liu Z; Li S; Liang Z; Chen Y; Wu Z
    Colloids Surf B Biointerfaces; 2019 May; 177():454-461. PubMed ID: 30802829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of bacteria with specific biomaterial surface chemistries under flow conditions.
    Katsikogianni MG; Missirlis YF
    Acta Biomater; 2010 Mar; 6(3):1107-18. PubMed ID: 19671455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell surface hydrophobicity and slime production of Staphylococcus epidermidis Brazilian isolates.
    Krepsky N; Rocha Ferreira RB; Ferreira Nunes AP; Casado Lins UG; Costa e Silva Filho F; de Mattos-Guaraldi AL; Netto-dosSantos KR
    Curr Microbiol; 2003 Apr; 46(4):280-6. PubMed ID: 12732978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CQ ratio of surface energy components influences adhesion and removal of fouling bacteria.
    Liu C; Zhao Q
    Biofouling; 2011 Mar; 27(3):275-85. PubMed ID: 21390912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial adhesion to hydrocarbons: role of asphaltenes and resins.
    Warne Zoueki C; Ghoshal S; Tufenkji N
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):219-26. PubMed ID: 20452190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial bacterial attachment in slow flowing systems: effects of cell and substrate surface properties.
    Wang H; Sodagari M; Chen Y; He X; Newby BM; Ju LK
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):415-22. PubMed ID: 21715146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study on the adhesion and reentrainment of nondeformable particles on surfaces: the role of surface roughness and electrostatic forces.
    Henry C; Minier JP; Lefèvre G
    Langmuir; 2012 Jan; 28(1):438-52. PubMed ID: 22107171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevance of electrokinetic theory for "soft" particles to bacterial cells: implications for bacterial adhesion.
    de Kerchove AJ; Elimelech M
    Langmuir; 2005 Jul; 21(14):6462-72. PubMed ID: 15982054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of surface coating on the adherence of slime producing and nonproducing Staphylococcus epidermidis.
    Hola V; Ruzicka F; Votava M
    New Microbiol; 2004 Jul; 27(3):305-8. PubMed ID: 15460535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Staphylococcus epidermidis adhesion to He, He/O(2) plasma treated PET films and aged materials: contributions of surface free energy and shear rate.
    Katsikogianni M; Amanatides E; Mataras D; Missirlis YF
    Colloids Surf B Biointerfaces; 2008 Sep; 65(2):257-68. PubMed ID: 18565741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating forces between charged particles in the presence of oppositely charged polyelectrolytes with the multi-particle colloidal probe technique.
    Borkovec M; Szilagyi I; Popa I; Finessi M; Sinha P; Maroni P; Papastavrou G
    Adv Colloid Interface Sci; 2012 Nov; 179-182():85-98. PubMed ID: 22795487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct measurements of forces between different charged colloidal particles and their prediction by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO).
    Montes Ruiz-Cabello FJ; Maroni P; Borkovec M
    J Chem Phys; 2013 Jun; 138(23):234705. PubMed ID: 23802974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air-water interface displaces adsorbed bacteria.
    Pitt WG; McBride MO; Barton AJ; Sagers RD
    Biomaterials; 1993 Jul; 14(8):605-8. PubMed ID: 8399954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions.
    Tufenkji N; Elimelech M
    Langmuir; 2004 Dec; 20(25):10818-28. PubMed ID: 15568829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the sorption of Staphylococcus epidermidis 33 on hydrophobic polystyrene surface by low-molecular-weight autogenous factors.
    Korobov VP; Eroshenko DV; Laurinyavichus KS
    Dokl Biol Sci; 2015; 463():219-22. PubMed ID: 26335974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new stochastic approach for the simulation of agglomeration between colloidal particles.
    Henry C; Minier JP; Pozorski J; Lefèvre G
    Langmuir; 2013 Nov; 29(45):13694-707. PubMed ID: 24111685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.