BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26208363)

  • 1. Rendered and Characterized Closed-Loop Accuracy of Impedance-Type Haptic Displays.
    Colonnese N; Siu AF; Abbott CM; Okamura AM
    IEEE Trans Haptics; 2015; 8(4):434-46. PubMed ID: 26208363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Control for Improved Transparency in Haptic Simulations.
    Abdossalami A; Sirouspour S
    IEEE Trans Haptics; 2009; 2(1):2-14. PubMed ID: 27788092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Study on the Perception Characteristics of Haptic Texture by Multidimensional Scaling.
    Wu J; Li N; Liu W; Song G; Zhang J
    IEEE Trans Haptics; 2015; 8(4):410-20. PubMed ID: 26054074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rendering Stiff Virtual Walls Using Model Matching Based Haptic Controller.
    Desai I; Gupta A; Chakraborty D
    IEEE Trans Haptics; 2019; 12(2):166-178. PubMed ID: 30703037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Low-Pass Filtering on Passivity and Rendering Performance of Series Elastic Actuation.
    Kenanoglu OT; Kenanoglu CU; Patoglu V
    IEEE Trans Haptics; 2023; 16(4):567-573. PubMed ID: 37141066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kinesthetic washout filter for force-feedback rendering.
    Danieau F; Lecuyer A; Guillotel P; Fleureau J; Mollet N; Christie M
    IEEE Trans Haptics; 2015; 8(1):114-8. PubMed ID: 25532190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of haptic degrees of freedom on task performance in virtual surgical environments.
    Forsslund J; Chan S; Selesnick J; Salisbury K; Silva RG; Blevins NH
    Stud Health Technol Inform; 2013; 184():129-35. PubMed ID: 23400144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptic Perception of Edge Sharpness in Real and Virtual Environments.
    Jaeyoung Park ; Provancher WR; Tan HZ
    IEEE Trans Haptics; 2017; 10(1):54-62. PubMed ID: 28113989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unilateral and Bilateral Virtual Springs: Contact Transitions Unmask Device Dynamics.
    Treadway E; Gillespie RB
    IEEE Trans Haptics; 2019; 12(2):205-216. PubMed ID: 30582553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.
    Ottensmeyer MP; Ben-Ur E; Salisbury JK
    Stud Health Technol Inform; 2000; 70():236-42. PubMed ID: 10977548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Customization, control, and characterization of a commercial haptic device for high-fidelity rendering of weak forces.
    Gurari N; Baud-Bovy G
    J Neurosci Methods; 2014 Sep; 235():169-80. PubMed ID: 25043509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haptic perception of force magnitude and its relation to postural arm dynamics in 3D.
    van Beek FE; Bergmann Tiest WM; Mugge W; Kappers AM
    Sci Rep; 2015 Dec; 5():18004. PubMed ID: 26643041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a realistic echographic simulator.
    d'Aulignac D; Laugier C; Troccaz J; Vieira S
    Med Image Anal; 2006 Feb; 10(1):71-81. PubMed ID: 15919234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haptic feedback for multilayer cutting.
    Rianto S; Li L; Hartley B
    Stud Health Technol Inform; 2008; 132():408-10. PubMed ID: 18391331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perception of force and stiffness in the presence of low-frequency haptic noise.
    Gurari N; Okamura AM; Kuchenbecker KJ
    PLoS One; 2017; 12(6):e0178605. PubMed ID: 28575068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realistic haptic rendering of interacting deformable objects in virtual environments.
    Duriez C; Dubois F; Kheddar A; Andriot C
    IEEE Trans Vis Comput Graph; 2006; 12(1):36-47. PubMed ID: 16382606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Skin Deformation as Force Substitution: Wearable Device Design and Performance During Haptic Exploration of Virtual Environments.
    Schorr SB; Okamura AM
    IEEE Trans Haptics; 2017; 10(3):418-430. PubMed ID: 28237933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic Levitation Haptic Augmentation for Virtual Tissue Stiffness Perception.
    Tong Q; Yuan Z; Liao X; Zheng M; Yuan T; Zhao J
    IEEE Trans Vis Comput Graph; 2018 Dec; 24(12):3123-3136. PubMed ID: 29990159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haptic interfaces for virtual environments: perceived instability and force constancy in haptic sensing of virtual surfaces.
    Tan HZ
    Can J Exp Psychol; 2007 Sep; 61(3):265-75. PubMed ID: 17974320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.