These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26208368)

  • 1. Human Activity Recognition by Combining a Small Number of Classifiers.
    Nazabal A; Garcia-Moreno P; Artes-Rodriguez A; Ghahramani Z
    IEEE J Biomed Health Inform; 2016 Sep; 20(5):1342-51. PubMed ID: 26208368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical Human Activity Recognition Using Wearable Sensors.
    Attal F; Mohammed S; Dedabrishvili M; Chamroukhi F; Oukhellou L; Amirat Y
    Sensors (Basel); 2015 Dec; 15(12):31314-38. PubMed ID: 26690450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing supervised learning techniques on the task of physical activity recognition.
    Dalton A; OLaighin G
    IEEE J Biomed Health Inform; 2013 Jan; 17(1):46-52. PubMed ID: 23070357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition.
    Ordóñez FJ; Roggen D
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26797612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data.
    Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U
    Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Semisupervised Recurrent Convolutional Attention Model for Human Activity Recognition.
    Chen K; Yao L; Zhang D; Wang X; Chang X; Nie F
    IEEE Trans Neural Netw Learn Syst; 2020 May; 31(5):1747-1756. PubMed ID: 31329134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Activities and Postures Recognition: From Inertial Measurements to Quaternion-Based Approaches.
    Zmitri M; Fourati H; Vuillerme AN
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning Compact Features for Human Activity Recognition Via Probabilistic First-Take-All.
    Ye J; Qi GJ; Zhuang N; Hu H; Hua KA
    IEEE Trans Pattern Anal Mach Intell; 2020 Jan; 42(1):126-139. PubMed ID: 30296212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A framework for automated evidence gathering with mobile systems using Bayesian Networks.
    José AB; Barbosa TM; Sene IG; da Rocha AF; Castro LS; Nascimento FA; Carvalho JL; Carvalho HS
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3681-4. PubMed ID: 18002796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for extracting temporal parameters based on hidden Markov models in body sensor networks with inertial sensors.
    Guenterberg E; Yang AY; Ghasemzadeh H; Jafari R; Bajcsy R; Sastry SS
    IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):1019-30. PubMed ID: 19726268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MBOSS: A Symbolic Representation of Human Activity Recognition Using Mobile Sensors.
    Montero Quispe KG; Sousa Lima W; Macêdo Batista D; Souto E
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic image modeling with an extended chain graph for human activity recognition and image segmentation.
    Zhang L; Zeng Z; Ji Q
    IEEE Trans Image Process; 2011 Sep; 20(9):2401-13. PubMed ID: 21421443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Human Activity Recognition With Wearable Sensors Through BEE: Leveraging Early Exit and Gradient Boosting.
    Yu J; Zhang L; Cheng D; Huang W; Wu H; Song A
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3452-3464. PubMed ID: 39259642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal classifier fusion in a non-bayesian probabilistic framework.
    Terrades OR; Valveny E; Tabbone S
    IEEE Trans Pattern Anal Mach Intell; 2009 Sep; 31(9):1630-44. PubMed ID: 19574623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of activities of daily living in healthy subjects using two ad-hoc classifiers.
    Urwyler P; Rampa L; Stucki R; Büchler M; Müri R; Mosimann UP; Nef T
    Biomed Eng Online; 2015 Jun; 14():54. PubMed ID: 26048452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Homomorphic Analysis for Human Activity Recognition From Acceleration Signals.
    Vanrell SR; Milone DH; Rufiner HL; Vanrell SR; Milone DH; Rufiner HL
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):1001-1010. PubMed ID: 28682268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the Dempster-Shafer theory of evidence with a revised lattice structure for activity recognition.
    Liao J; Bi Y; Nugent C
    IEEE Trans Inf Technol Biomed; 2011 Jan; 15(1):74-82. PubMed ID: 21075728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A system for activity recognition using multi-sensor fusion.
    Gao L; Bourke AK; Nelson J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7869-72. PubMed ID: 22256164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal wireless sensor network-based ambient assisted living in real homes with multiple residents.
    Tunca C; Alemdar H; Ertan H; Incel OD; Ersoy C
    Sensors (Basel); 2014 May; 14(6):9692-719. PubMed ID: 24887044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.