These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 26208368)
21. Pre-Processing Effect on the Accuracy of Event-Based Activity Segmentation and Classification through Inertial Sensors. Fida B; Bernabucci I; Bibbo D; Conforto S; Schmid M Sensors (Basel); 2015 Sep; 15(9):23095-109. PubMed ID: 26378544 [TBL] [Abstract][Full Text] [Related]
22. Personalization algorithm for real-time activity recognition using PDA, wireless motion bands, and binary decision tree. Pärkkä J; Cluitmans L; Ermes M IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1211-5. PubMed ID: 20813625 [TBL] [Abstract][Full Text] [Related]
23. Designing a robust activity recognition framework for health and exergaming using wearable sensors. Alshurafa N; Xu W; Liu JJ; Huang MC; Mortazavi B; Roberts CK; Sarrafzadeh M IEEE J Biomed Health Inform; 2014 Sep; 18(5):1636-46. PubMed ID: 24235280 [TBL] [Abstract][Full Text] [Related]
24. Human activity recognition based on feature selection in smart home using back-propagation algorithm. Fang H; He L; Si H; Liu P; Xie X ISA Trans; 2014 Sep; 53(5):1629-38. PubMed ID: 25016308 [TBL] [Abstract][Full Text] [Related]
25. Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation. Rohlfing T; Russakoff DB; Maurer CR IEEE Trans Med Imaging; 2004 Aug; 23(8):983-94. PubMed ID: 15338732 [TBL] [Abstract][Full Text] [Related]
26. Integrating heterogeneous classifier ensembles for EMG signal decomposition based on classifier agreement. Rasheed S; Stashuk DW; Kamel MS IEEE Trans Inf Technol Biomed; 2010 May; 14(3):866-82. PubMed ID: 19171524 [TBL] [Abstract][Full Text] [Related]
27. Human daily activity recognition with sparse representation using wearable sensors. Zhang M; Sawchuk AA IEEE J Biomed Health Inform; 2013 May; 17(3):553-60. PubMed ID: 24592458 [TBL] [Abstract][Full Text] [Related]
28. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning. Altini M; Penders J; Vullers R; Amft O IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168 [TBL] [Abstract][Full Text] [Related]
29. Visual event recognition in videos by learning from Web data. Duan L; Xu D; Tsang IW; Luo J IEEE Trans Pattern Anal Mach Intell; 2012 Sep; 34(9):1667-80. PubMed ID: 22201057 [TBL] [Abstract][Full Text] [Related]
30. Zero-Shot Human Activity Recognition Using Non-Visual Sensors. Al Machot F; R Elkobaisi M; Kyamakya K Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033072 [TBL] [Abstract][Full Text] [Related]
31. Robust Activity Recognition for Aging Society. Chen Y; Yu L; Ota K; Dong M IEEE J Biomed Health Inform; 2018 Nov; 22(6):1754-1764. PubMed ID: 29993792 [TBL] [Abstract][Full Text] [Related]
32. Matrix and Tensor Completion on a Human Activity Recognition Framework. Savvaki S; Tsagkatakis G; Panousopoulou A; Tsakalides P IEEE J Biomed Health Inform; 2017 Nov; 21(6):1554-1561. PubMed ID: 28796626 [TBL] [Abstract][Full Text] [Related]
33. The application of EMD in activity recognition based on a single triaxial accelerometer. Liao M; Guo Y; Qin Y; Wang Y Biomed Mater Eng; 2015; 26 Suppl 1():S1533-9. PubMed ID: 26405917 [TBL] [Abstract][Full Text] [Related]
34. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network. Steven Eyobu O; Han DS Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377 [TBL] [Abstract][Full Text] [Related]
35. A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation. Lin CW; Yang YT; Wang JS; Yang YC IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):991-8. PubMed ID: 22875251 [TBL] [Abstract][Full Text] [Related]
37. Probabilistic learning from incomplete data for recognition of activities of daily living in smart homes. Zhang S; McClean SI; Scotney BW IEEE Trans Inf Technol Biomed; 2012 May; 16(3):454-62. PubMed ID: 22411044 [TBL] [Abstract][Full Text] [Related]
38. Close Human Interaction Recognition Using Patch-Aware Models. Yu Kong ; Yun Fu IEEE Trans Image Process; 2016 Jan; 25(1):167-78. PubMed ID: 26561435 [TBL] [Abstract][Full Text] [Related]
39. Recognition and Repetition Counting for ComplexPhysical Exercises with Deep Learning. Soro A; Brunner G; Tanner S; Wattenhofer R Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30744158 [TBL] [Abstract][Full Text] [Related]
40. Improving activity recognition using temporal coherence. Ataya A; Jallon P; Bianchi P; Doron M Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4215-8. PubMed ID: 24110662 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]