These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 26208544)
21. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings. Zhang WH; Huang Z; He LY; Sheng XF Chemosphere; 2012 Jun; 87(10):1171-8. PubMed ID: 22397839 [TBL] [Abstract][Full Text] [Related]
22. Assessment of rhizospheric culturable bacteria of Phragmites australis and Juncus effusus from polluted sites. Pereira SI; Pires C; Henriques I; Correia A; Magan N; Castro PM J Basic Microbiol; 2015 Oct; 55(10):1179-90. PubMed ID: 26059184 [TBL] [Abstract][Full Text] [Related]
23. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Jiang CY; Sheng XF; Qian M; Wang QY Chemosphere; 2008 May; 72(2):157-64. PubMed ID: 18348897 [TBL] [Abstract][Full Text] [Related]
24. Metal-resistant rhizobacteria isolates improve Mucuna deeringiana phytoextraction capacity in multi-metal contaminated soils from a gold mining area. Boechat CL; Giovanella P; Amorim MB; de Sá EL; de Oliveira Camargo FA Environ Sci Pollut Res Int; 2017 Jan; 24(3):3063-3073. PubMed ID: 27854061 [TBL] [Abstract][Full Text] [Related]
25. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Tak HI; Ahmad F; Babalola OO Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811 [TBL] [Abstract][Full Text] [Related]
26. Root-soil-microbiome interaction in the rhizosphere of Masson pine (Pinus massoniana) under different levels of heavy metal pollution. Wu Y; Wang H; Peng L; Zhao H; Zhang Q; Tao Q; Tang X; Huang R; Li B; Wang C Ecotoxicol Environ Saf; 2024 Sep; 283():116779. PubMed ID: 39083870 [TBL] [Abstract][Full Text] [Related]
27. The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation. Kong Z; Glick BR Adv Microb Physiol; 2017; 71():97-132. PubMed ID: 28760324 [TBL] [Abstract][Full Text] [Related]
28. Assessment of plant growth promoting bacterial populations in the rhizosphere of metallophytes from the Kettara mine, Marrakech. Benidire L; Pereira SI; Castro PM; Boularbah A Environ Sci Pollut Res Int; 2016 Nov; 23(21):21751-21765. PubMed ID: 27522210 [TBL] [Abstract][Full Text] [Related]
29. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Chen YX; Wang YP; Lin Q; Luo YM Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516 [TBL] [Abstract][Full Text] [Related]
30. New advances in plant growth-promoting rhizobacteria for bioremediation. Zhuang X; Chen J; Shim H; Bai Z Environ Int; 2007 Apr; 33(3):406-13. PubMed ID: 17275086 [TBL] [Abstract][Full Text] [Related]
31. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Martínez-Alcalá I; Walker DJ; Bernal MP Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590 [TBL] [Abstract][Full Text] [Related]
32. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Rajkumar M; Vara Prasad MN; Freitas H; Ae N Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893 [TBL] [Abstract][Full Text] [Related]
33. Copper-tolerant rhizosphere bacteria-characterization and assessment of plant growth promoting factors. Rathi M; Nandabalan YK Environ Sci Pollut Res Int; 2017 Apr; 24(10):9723-9733. PubMed ID: 28251535 [TBL] [Abstract][Full Text] [Related]
34. Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth. Montalbán B; Croes S; Weyens N; Lobo MC; Pérez-Sanz A; Vangronsveld J Int J Phytoremediation; 2016 Oct; 18(10):985-93. PubMed ID: 27159736 [TBL] [Abstract][Full Text] [Related]
35. Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Bonito G; Reynolds H; Robeson MS; Nelson J; Hodkinson BP; Tuskan G; Schadt CW; Vilgalys R Mol Ecol; 2014 Jul; 23(13):3356-70. PubMed ID: 24894495 [TBL] [Abstract][Full Text] [Related]
36. The effects of arbuscular mycorrhizal fungi on sex-specific responses to Pb pollution in Populus cathayana. Chen L; Hu X; Yang W; Xu Z; Zhang D; Gao S Ecotoxicol Environ Saf; 2015 Mar; 113():460-8. PubMed ID: 25553418 [TBL] [Abstract][Full Text] [Related]
37. "In situ" phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Dary M; Chamber-Pérez MA; Palomares AJ; Pajuelo E J Hazard Mater; 2010 May; 177(1-3):323-30. PubMed ID: 20056325 [TBL] [Abstract][Full Text] [Related]
38. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Rizvi A; Khan MS Ecotoxicol Environ Saf; 2018 Aug; 157():9-20. PubMed ID: 29605647 [TBL] [Abstract][Full Text] [Related]
39. Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sr CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils. Wang W; Deng Z; Tan H; Cao L Int J Phytoremediation; 2013; 15(5):488-97. PubMed ID: 23488174 [TBL] [Abstract][Full Text] [Related]
40. [Isolation and biodiversity of copper-resistant bacteria from rhizosphere soil of Elsholtzia splendens]. Sun L; He L; Zhang Y; Zhang W; Wang Q; Sheng X Wei Sheng Wu Xue Bao; 2009 Oct; 49(10):1360-6. PubMed ID: 20069883 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]