BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26208676)

  • 1. Monomerization alters the dynamics of the lid region in Campylobacter jejuni CstII: an MD simulation study.
    Prabhakar PK; Srivastava A; Rao KK; Balaji PV
    J Biomol Struct Dyn; 2016; 34(4):778-91. PubMed ID: 26208676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Cys78-Asn88 loop region of the Campylobacter jejuni CstII is essential for α2,3-sialyltransferase activity: analysis of the His85 mutants.
    Prabhakar PK; Rao KK; Balaji PV
    J Biochem; 2014 Oct; 156(4):229-38. PubMed ID: 24817703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR spectroscopic characterization of the sialyltransferase CstII from Campylobacter jejuni: histidine 188 is the general base.
    Chan PH; Lairson LL; Lee HJ; Wakarchuk WW; Strynadka NC; Withers SG; McIntosh LP
    Biochemistry; 2009 Dec; 48(47):11220-30. PubMed ID: 19824695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog.
    Chiu CP; Watts AG; Lairson LL; Gilbert M; Lim D; Wakarchuk WW; Withers SG; Strynadka NC
    Nat Struct Mol Biol; 2004 Feb; 11(2):163-70. PubMed ID: 14730352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of the alpha-2,3-sialyltransferase Cst-I from Campylobacter jejuni in apo and substrate-analogue bound forms.
    Chiu CP; Lairson LL; Gilbert M; Wakarchuk WW; Withers SG; Strynadka NC
    Biochemistry; 2007 Jun; 46(24):7196-204. PubMed ID: 17518445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fold-recognition and comparative modeling of human alpha2,3-sialyltransferases reveal their sequence and structural similarities to CstII from Campylobacter jejuni.
    Sujatha MS; Balaji PV
    BMC Struct Biol; 2006 Apr; 6():9. PubMed ID: 16620397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and kinetic analysis of substrate binding to the sialyltransferase Cst-II from Campylobacter jejuni.
    Lee HJ; Lairson LL; Rich JR; Lameignere E; Wakarchuk WW; Withers SG; Strynadka NCJ
    J Biol Chem; 2011 Oct; 286(41):35922-35932. PubMed ID: 21832050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and dynamical correlations in PfHGXPRT oligomers: A molecular dynamics simulation study.
    Karmakar T; Roy S; Balaram H; Balasubramanian S
    J Biomol Struct Dyn; 2016 Jul; 34(7):1590-605. PubMed ID: 26441001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics studies on the domain swapped Salmonella typhimurium survival protein SurE: insights on the possible reasons for catalytic cooperativity.
    Mathiharan YK; Murthy MRN
    J Biomol Struct Dyn; 2018 Jul; 36(9):2303-2311. PubMed ID: 28714824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consequences of breaking the Asp-His hydrogen bond of the catalytic triad: effects on the structure and dynamics of the serine esterase cutinase.
    Lau EY; Bruice TC
    Biophys J; 1999 Jul; 77(1):85-98. PubMed ID: 10388742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of the Active Sites of Dimeric Seryl tRNA Synthetase from Methanopyrus kandleri.
    Dutta S; Nandi N
    J Phys Chem B; 2015 Aug; 119(34):10832-48. PubMed ID: 25794108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations.
    Barbe S; Lafaquière V; Guieysse D; Monsan P; Remaud-Siméon M; André I
    Proteins; 2009 Nov; 77(3):509-23. PubMed ID: 19475702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytidine 5'-monophosphate (CMP)-induced structural changes in a multifunctional sialyltransferase from Pasteurella multocida.
    Ni L; Sun M; Yu H; Chokhawala H; Chen X; Fisher AJ
    Biochemistry; 2006 Feb; 45(7):2139-48. PubMed ID: 16475803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic versus mutation dependent instability/flexibility: a comparative analysis of the structure and dynamics of wild-type transthyretin and its pathogenic variants.
    Lei M; Yang M; Huo S
    J Struct Biol; 2004 Nov; 148(2):153-68. PubMed ID: 15477096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the open conformations of protein kinases using molecular dynamics simulations.
    Bjarnadottir U; Nielsen JE
    Biopolymers; 2012 Jan; 97(1):65-72. PubMed ID: 21858778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics study of the energetic, mechanistic, and structural implications of a closed phosphate tube in ncd.
    Minehardt TJ; Cooke R; Pate E; Kollman PA
    Biophys J; 2001 Mar; 80(3):1151-68. PubMed ID: 11222280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization of Campylobacter jejuni lipooligosaccharide outer cores associated with Guillain-Barre and Miller Fisher syndromes.
    Godschalk PC; Kuijf ML; Li J; St Michael F; Ang CW; Jacobs BC; Karwaski MF; Brochu D; Moterassed A; Endtz HP; van Belkum A; Gilbert M
    Infect Immun; 2007 Mar; 75(3):1245-54. PubMed ID: 17261613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding domain movements and interactions of Pseudomonas aeruginosa lipase with lipid molecule tristearoyl glycerol: A molecular dynamics approach.
    Thiruvengadam K; Baskaran SK; Pennathur G
    J Mol Graph Model; 2018 Oct; 85():190-197. PubMed ID: 30227364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full length amylin oligomer aggregation: insights from molecular dynamics simulations and implications for design of aggregation inhibitors.
    Berhanu WM; Masunov AE
    J Biomol Struct Dyn; 2014; 32(10):1651-69. PubMed ID: 24028418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.