These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 26208718)
1. The pattern of congenital heart defects arising from reduced Tbx5 expression is altered in a Down syndrome mouse model. Polk RC; Gergics P; Steimle JD; Li H; Moskowitz IP; Camper SA; Reeves RH BMC Dev Biol; 2015 Jul; 15():30. PubMed ID: 26208718 [TBL] [Abstract][Full Text] [Related]
2. Penetrance of Congenital Heart Disease in a Mouse Model of Down Syndrome Depends on a Trisomic Potentiator of a Disomic Modifier. Li H; Edie S; Klinedinst D; Jeong JS; Blackshaw S; Maslen CL; Reeves RH Genetics; 2016 Jun; 203(2):763-70. PubMed ID: 27029737 [TBL] [Abstract][Full Text] [Related]
3. Genetic modifiers predisposing to congenital heart disease in the sensitized Down syndrome population. Li H; Cherry S; Klinedinst D; DeLeon V; Redig J; Reshey B; Chin MT; Sherman SL; Maslen CL; Reeves RH Circ Cardiovasc Genet; 2012 Jun; 5(3):301-8. PubMed ID: 22523272 [TBL] [Abstract][Full Text] [Related]
4. Skeletal Deficits in Male and Female down Syndrome Model Mice Arise Independent of Normalized Dyrk1a Expression in Osteoblasts. Thomas JR; Sloan K; Cave K; Wallace JM; Roper RJ Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828335 [TBL] [Abstract][Full Text] [Related]
5. Postnatal lethality and cardiac anomalies in the Ts65Dn Down syndrome mouse model. Moore CS Mamm Genome; 2006 Oct; 17(10):1005-12. PubMed ID: 17019652 [TBL] [Abstract][Full Text] [Related]
6. Abnormal mineralization of the Ts65Dn Down syndrome mouse appendicular skeleton begins during embryonic development in a Dyrk1a-independent manner. Blazek JD; Malik AM; Tischbein M; Arbones ML; Moore CS; Roper RJ Mech Dev; 2015 May; 136():133-42. PubMed ID: 25556111 [TBL] [Abstract][Full Text] [Related]
7. Highly penetrant myeloproliferative disease in the Ts65Dn mouse model of Down syndrome. Kirsammer G; Jilani S; Liu H; Davis E; Gurbuxani S; Le Beau MM; Crispino JD Blood; 2008 Jan; 111(2):767-75. PubMed ID: 17901249 [TBL] [Abstract][Full Text] [Related]
8. Increased male reproductive success in Ts65Dn "Down syndrome" mice. Moore CS; Hawkins C; Franca A; Lawler A; Devenney B; Das I; Reeves RH Mamm Genome; 2010 Dec; 21(11-12):543-9. PubMed ID: 21110029 [TBL] [Abstract][Full Text] [Related]
9. Embryonic and not maternal trisomy causes developmental attenuation in the Ts65Dn mouse model for Down syndrome. Blazek JD; Billingsley CN; Newbauer A; Roper RJ Dev Dyn; 2010 Jun; 239(6):1645-53. PubMed ID: 20503361 [TBL] [Abstract][Full Text] [Related]
10. Non-trisomic homeobox gene expression during craniofacial development in the Ts65Dn mouse model of Down syndrome. Billingsley CN; Allen JR; Baumann DD; Deitz SL; Blazek JD; Newbauer A; Darrah A; Long BC; Young B; Clement M; Doerge RW; Roper RJ Am J Med Genet A; 2013 Aug; 161A(8):1866-74. PubMed ID: 23843306 [TBL] [Abstract][Full Text] [Related]
11. Trisomy for the Down syndrome 'critical region' is necessary but not sufficient for brain phenotypes of trisomic mice. Olson LE; Roper RJ; Sengstaken CL; Peterson EA; Aquino V; Galdzicki Z; Siarey R; Pletnikov M; Moran TH; Reeves RH Hum Mol Genet; 2007 Apr; 16(7):774-82. PubMed ID: 17339268 [TBL] [Abstract][Full Text] [Related]
12. Normalization of Dyrk1A expression by AAV2/1-shDyrk1A attenuates hippocampal-dependent defects in the Ts65Dn mouse model of Down syndrome. Altafaj X; Martín ED; Ortiz-Abalia J; Valderrama A; Lao-Peregrín C; Dierssen M; Fillat C Neurobiol Dis; 2013 Apr; 52():117-27. PubMed ID: 23220201 [TBL] [Abstract][Full Text] [Related]
13. The App-Runx1 region is critical for birth defects and electrocardiographic dysfunctions observed in a Down syndrome mouse model. Raveau M; Lignon JM; Nalesso V; Duchon A; Groner Y; Sharp AJ; Dembele D; Brault V; Hérault Y PLoS Genet; 2012 May; 8(5):e1002724. PubMed ID: 22693452 [TBL] [Abstract][Full Text] [Related]
14. Novel insights from fetal and placental phenotyping in 3 mouse models of Down syndrome. Adams AD; Hoffmann V; Koehly L; Guedj F; Bianchi DW Am J Obstet Gynecol; 2021 Sep; 225(3):296.e1-296.e13. PubMed ID: 33766516 [TBL] [Abstract][Full Text] [Related]
15. Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease. Kathiriya IS; Rao KS; Iacono G; Devine WP; Blair AP; Hota SK; Lai MH; Garay BI; Thomas R; Gong HZ; Wasson LK; Goyal P; Sukonnik T; Hu KM; Akgun GA; Bernard LD; Akerberg BN; Gu F; Li K; Speir ML; Haeussler M; Pu WT; Stuart JM; Seidman CE; Seidman JG; Heyn H; Bruneau BG Dev Cell; 2021 Feb; 56(3):292-309.e9. PubMed ID: 33321106 [TBL] [Abstract][Full Text] [Related]
16. Perinatal loss of Ts65Dn Down syndrome mice. Roper RJ; St John HK; Philip J; Lawler A; Reeves RH Genetics; 2006 Jan; 172(1):437-43. PubMed ID: 16172497 [TBL] [Abstract][Full Text] [Related]
17. Neuroanatomical alterations and synaptic plasticity impairment in the perirhinal cortex of the Ts65Dn mouse model of Down syndrome. Roncacé V; Burattini C; Stagni F; Guidi S; Giacomini A; Emili M; Aicardi G; Bartesaghi R Neurobiol Dis; 2017 Oct; 106():89-100. PubMed ID: 28651891 [TBL] [Abstract][Full Text] [Related]
18. Chronic up-regulation of the SHH pathway normalizes some developmental effects of trisomy in Ts65Dn mice. Dutka T; Hallberg D; Reeves RH Mech Dev; 2015 Feb; 135():68-80. PubMed ID: 25511459 [TBL] [Abstract][Full Text] [Related]
19. Gene expression from the aneuploid chromosome in a trisomy mouse model of down syndrome. Lyle R; Gehrig C; Neergaard-Henrichsen C; Deutsch S; Antonarakis SE Genome Res; 2004 Jul; 14(7):1268-74. PubMed ID: 15231743 [TBL] [Abstract][Full Text] [Related]
20. A New TBX5 Loss-of-Function Mutation Contributes to Congenital Heart Defect and Atrioventricular Block. Zhang Y; Sun YM; Xu YJ; Zhao CM; Yuan F; Guo XJ; Guo YH; Yang CX; Gu JN; Qiao Q; Wang J; Yang YQ Int Heart J; 2020 Jul; 61(4):761-768. PubMed ID: 32641638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]