BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26208852)

  • 1. JAK kinase inhibitors for the treatment of acute lymphoblastic leukemia.
    Degryse S; Cools J
    J Hematol Oncol; 2015 Jul; 8():91. PubMed ID: 26208852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct Acute Lymphoblastic Leukemia (ALL)-associated Janus Kinase 3 (JAK3) Mutants Exhibit Different Cytokine-Receptor Requirements and JAK Inhibitor Specificities.
    Losdyck E; Hornakova T; Springuel L; Degryse S; Gielen O; Cools J; Constantinescu SN; Flex E; Tartaglia M; Renauld JC; Knoops L
    J Biol Chem; 2015 Nov; 290(48):29022-34. PubMed ID: 26446793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute lymphoblastic leukemia-associated JAK1 mutants activate the Janus kinase/STAT pathway via interleukin-9 receptor alpha homodimers.
    Hornakova T; Staerk J; Royer Y; Flex E; Tartaglia M; Constantinescu SN; Knoops L; Renauld JC
    J Biol Chem; 2009 Mar; 284(11):6773-81. PubMed ID: 19139102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure of tofacitinib to achieve an objective response in a
    Wong J; Wall M; Corboy GP; Taubenheim N; Gregory GP; Opat S; Shortt J
    Cold Spring Harb Mol Case Stud; 2020 Aug; 6(4):. PubMed ID: 32843425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oncogenic JAK1 and JAK2-activating mutations resistant to ATP-competitive inhibitors.
    Hornakova T; Springuel L; Devreux J; Dusa A; Constantinescu SN; Knoops L; Renauld JC
    Haematologica; 2011 Jun; 96(6):845-53. PubMed ID: 21393331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JAK mutations in high-risk childhood acute lymphoblastic leukemia.
    Mullighan CG; Zhang J; Harvey RC; Collins-Underwood JR; Schulman BA; Phillips LA; Tasian SK; Loh ML; Su X; Liu W; Devidas M; Atlas SR; Chen IM; Clifford RJ; Gerhard DS; Carroll WL; Reaman GH; Smith M; Downing JR; Hunger SP; Willman CL
    Proc Natl Acad Sci U S A; 2009 Jun; 106(23):9414-8. PubMed ID: 19470474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of gain-of-function JAK1 and JAK3 mutations in adult T cell leukemia/lymphoma.
    Kameda T; Shide K; Shimoda HK; Hidaka T; Kubuki Y; Katayose K; Taniguchi Y; Sekine M; Kamiunntenn A; Maeda K; Nagata K; Matsunaga T; Shimoda K
    Int J Hematol; 2010 Sep; 92(2):320-5. PubMed ID: 20697856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia.
    Zenatti PP; Ribeiro D; Li W; Zuurbier L; Silva MC; Paganin M; Tritapoe J; Hixon JA; Silveira AB; Cardoso BA; Sarmento LM; Correia N; Toribio ML; Kobarg J; Horstmann M; Pieters R; Brandalise SR; Ferrando AA; Meijerink JP; Durum SK; Yunes JA; Barata JT
    Nat Genet; 2011 Sep; 43(10):932-9. PubMed ID: 21892159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia.
    Flex E; Petrangeli V; Stella L; Chiaretti S; Hornakova T; Knoops L; Ariola C; Fodale V; Clappier E; Paoloni F; Martinelli S; Fragale A; Sanchez M; Tavolaro S; Messina M; Cazzaniga G; Camera A; Pizzolo G; Tornesello A; Vignetti M; Battistini A; Cavé H; Gelb BD; Renauld JC; Biondi A; Constantinescu SN; Foà R; Tartaglia M
    J Exp Med; 2008 Apr; 205(4):751-8. PubMed ID: 18362173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study.
    Li Y; Buijs-Gladdines JG; Canté-Barrett K; Stubbs AP; Vroegindeweij EM; Smits WK; van Marion R; Dinjens WN; Horstmann M; Kuiper RP; Buijsman RC; Zaman GJ; van der Spek PJ; Pieters R; Meijerink JP
    PLoS Med; 2016 Dec; 13(12):e1002200. PubMed ID: 27997540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a novel functional JAK1 S646P mutation in acute lymphoblastic leukemia.
    Li Q; Li B; Hu L; Ning H; Jiang M; Wang D; Liu T; Zhang B; Chen H
    Oncotarget; 2017 May; 8(21):34687-34697. PubMed ID: 28410228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors.
    Haan C; Rolvering C; Raulf F; Kapp M; Drückes P; Thoma G; Behrmann I; Zerwes HG
    Chem Biol; 2011 Mar; 18(3):314-23. PubMed ID: 21439476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytokine receptor signaling is required for the survival of ALK- anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations.
    Chen J; Zhang Y; Petrus MN; Xiao W; Nicolae A; Raffeld M; Pittaluga S; Bamford RN; Nakagawa M; Ouyang ST; Epstein AL; Kadin ME; Del Mistro A; Woessner R; Jaffe ES; Waldmann TA
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):3975-3980. PubMed ID: 28356514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor-specific HSP90 inhibition as a therapeutic approach in JAK-mutant acute lymphoblastic leukemias.
    Kucine N; Marubayashi S; Bhagwat N; Papalexi E; Koppikar P; Sanchez Martin M; Dong L; Tallman MS; Paietta E; Wang K; He J; Lipson D; Stephens P; Miller V; Rowe JM; Teruya-Feldstein J; Mullighan CG; Ferrando AA; Krivtsov A; Armstrong S; Leung L; Ochiana SO; Chiosis G; Levine RL; Kleppe M
    Blood; 2015 Nov; 126(22):2479-83. PubMed ID: 26443624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ALL-associated JAK1 mutations confer hypersensitivity to the antiproliferative effect of type I interferon.
    Hornakova T; Chiaretti S; Lemaire MM; Foà R; Ben Abdelali R; Asnafi V; Tartaglia M; Renauld JC; Knoops L
    Blood; 2010 Apr; 115(16):3287-95. PubMed ID: 20167706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperating JAK1 and JAK3 mutants increase resistance to JAK inhibitors.
    Springuel L; Hornakova T; Losdyck E; Lambert F; Leroy E; Constantinescu SN; Flex E; Tartaglia M; Knoops L; Renauld JC
    Blood; 2014 Dec; 124(26):3924-31. PubMed ID: 25352124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular regulation of Janus kinase (JAK) activation.
    Babon JJ; Lucet IS; Murphy JM; Nicola NA; Varghese LN
    Biochem J; 2014 Aug; 462(1):1-13. PubMed ID: 25057888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model.
    Degryse S; de Bock CE; Cox L; Demeyer S; Gielen O; Mentens N; Jacobs K; Geerdens E; Gianfelici V; Hulselmans G; Fiers M; Aerts S; Meijerink JP; Tousseyn T; Cools J
    Blood; 2014 Nov; 124(20):3092-100. PubMed ID: 25193870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Janus Kinase Mutations in Mice Lacking PU.1 and Spi-B Drive B Cell Leukemia through Reactive Oxygen Species-Induced DNA Damage.
    Lim M; Batista CR; de Oliveira BR; Creighton R; Ferguson J; Clemmer K; Knight D; Iansavitchous J; Mahmood D; Avino M; DeKoter RP
    Mol Cell Biol; 2020 Aug; 40(18):. PubMed ID: 32631903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Acetylcysteine Alters Disease Progression and Increases Janus Kinase Mutation Frequency in a Mouse Model of Precursor B-Cell Acute Lymphoblastic Leukemia.
    Sams MP; Iansavitchous J; Astridge M; Rysan H; Xu LS; Rodrigues de Oliveira B; DeKoter RP
    J Pharmacol Exp Ther; 2024 Mar; 389(1):40-50. PubMed ID: 38336380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.