BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26208852)

  • 21. JAK3 pathway is constitutively active in B-lineage acute lymphoblastic leukemia.
    Uckun FM; Pitt J; Qazi S
    Expert Rev Anticancer Ther; 2011 Jan; 11(1):37-48. PubMed ID: 21070101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. JAK: Not Just Another Kinase.
    Agashe RP; Lippman SM; Kurzrock R
    Mol Cancer Ther; 2022 Dec; 21(12):1757-1764. PubMed ID: 36252553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project.
    Loh ML; Zhang J; Harvey RC; Roberts K; Payne-Turner D; Kang H; Wu G; Chen X; Becksfort J; Edmonson M; Buetow KH; Carroll WL; Chen IM; Wood B; Borowitz MJ; Devidas M; Gerhard DS; Bowman P; Larsen E; Winick N; Raetz E; Smith M; Downing JR; Willman CL; Mullighan CG; Hunger SP
    Blood; 2013 Jan; 121(3):485-8. PubMed ID: 23212523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers.
    Jeong EG; Kim MS; Nam HK; Min CK; Lee S; Chung YJ; Yoo NJ; Lee SH
    Clin Cancer Res; 2008 Jun; 14(12):3716-21. PubMed ID: 18559588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. JAK1 Pseudokinase V666G Mutant Dominantly Impairs JAK3 Phosphorylation and IL-2 Signaling.
    Grant AH; Rodriguez AC; Rodriguez Moncivais OJ; Sun S; Li L; Mohl JE; Leung MY; Kirken RA; Rodriguez G
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia.
    Ott CJ; Kopp N; Bird L; Paranal RM; Qi J; Bowman T; Rodig SJ; Kung AL; Bradner JE; Weinstock DM
    Blood; 2012 Oct; 120(14):2843-52. PubMed ID: 22904298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The molecular genetic makeup of acute lymphoblastic leukemia.
    Mullighan CG
    Hematology Am Soc Hematol Educ Program; 2012; 2012():389-96. PubMed ID: 23233609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of Janus kinases in CRLF2-rearranged acute lymphoblastic leukemia.
    Chang Y; Min J; Jarusiewicz JA; Actis M; Yu-Chen Bradford S; Mayasundari A; Yang L; Chepyala D; Alcock LJ; Roberts KG; Nithianantham S; Maxwell D; Rowland L; Larsen R; Seth A; Goto H; Imamura T; Akahane K; Hansen BS; Pruett-Miller SM; Paietta EM; Litzow MR; Qu C; Yang JJ; Fischer M; Rankovic Z; Mullighan CG
    Blood; 2021 Dec; 138(23):2313-2326. PubMed ID: 34110416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia.
    Vicente C; Schwab C; Broux M; Geerdens E; Degryse S; Demeyer S; Lahortiga I; Elliott A; Chilton L; La Starza R; Mecucci C; Vandenberghe P; Goulden N; Vora A; Moorman AV; Soulier J; Harrison CJ; Clappier E; Cools J
    Haematologica; 2015 Oct; 100(10):1301-10. PubMed ID: 26206799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transforming JAK1 mutations exhibit differential signalling, FERM domain requirements and growth responses to interferon-γ.
    Gordon GM; Lambert QT; Daniel KG; Reuther GW
    Biochem J; 2010 Dec; 432(2):255-65. PubMed ID: 20868368
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency and prognostic implications of JAK 1-3 aberrations in Down syndrome acute lymphoblastic and myeloid leukemia.
    Blink M; Buitenkamp TD; van den Heuvel-Eibrink MM; Danen-van Oorschot AA; de Haas V; Reinhardt D; Klusmann JH; Zimmermann M; Devidas M; Carroll AJ; Basso G; Pession A; Hasle H; Pieters R; Rabin KR; Izraeli S; Zwaan CM
    Leukemia; 2011 Aug; 25(8):1365-8. PubMed ID: 21537335
    [No Abstract]   [Full Text] [Related]  

  • 32. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia.
    Degryse S; de Bock CE; Demeyer S; Govaerts I; Bornschein S; Verbeke D; Jacobs K; Binos S; Skerrett-Byrne DA; Murray HC; Verrills NM; Van Vlierberghe P; Cools J; Dun MD
    Leukemia; 2018 Mar; 32(3):788-800. PubMed ID: 28852199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding the biology of CRLF2-overexpressing acute lymphoblastic leukemia.
    Tasian SK; Loh ML
    Crit Rev Oncog; 2011; 16(1-2):13-24. PubMed ID: 22150304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural modeling of JAK1 mutations in T-cell acute lymphoblastic leukemia reveals a second contact site between pseudokinase and kinase domains.
    Canté-Barrett K; Uitdehaag JC; Meijerink JP
    Haematologica; 2016 May; 101(5):e189-91. PubMed ID: 26819051
    [No Abstract]   [Full Text] [Related]  

  • 35. Driver mutations in Janus kinases in a mouse model of B-cell leukemia induced by deletion of PU.1 and Spi-B.
    Batista CR; Lim M; Laramée AS; Abu-Sardanah F; Xu LS; Hossain R; Bell GI; Hess DA; DeKoter RP
    Blood Adv; 2018 Nov; 2(21):2798-2810. PubMed ID: 30355579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential substrate recognition capabilities of Janus family protein tyrosine kinases within the interleukin 2 receptor (IL2R) system: Jak3 as a potential molecular target for treatment of leukemias with a hyperactive Jak-Stat signaling machinery.
    Witthuhn BA; Williams MD; Kerawalla H; Uckun FM
    Leuk Lymphoma; 1999 Jan; 32(3-4):289-97. PubMed ID: 10037026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated analysis of CRLF2 signaling in acute lymphoblastic leukemia identifies Polo-like kinase 1 as a potential therapeutic target.
    Huang TC; Cutler J; Bharne S; Zhong J; Weinstock D; Tyner J; Gojo I; Civin C; Pandey A
    Leuk Lymphoma; 2015 May; 56(5):1524-7. PubMed ID: 25213184
    [No Abstract]   [Full Text] [Related]  

  • 38. Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias.
    Shochat C; Tal N; Bandapalli OR; Palmi C; Ganmore I; te Kronnie G; Cario G; Cazzaniga G; Kulozik AE; Stanulla M; Schrappe M; Biondi A; Basso G; Bercovich D; Muckenthaler MU; Izraeli S
    J Exp Med; 2011 May; 208(5):901-8. PubMed ID: 21536738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. JAK/STAT signaling in hematological malignancies.
    Vainchenker W; Constantinescu SN
    Oncogene; 2013 May; 32(21):2601-13. PubMed ID: 22869151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia.
    Wang Q; Qiu H; Jiang H; Wu L; Dong S; Pan J; Wang W; Ping N; Xia J; Sun A; Wu D; Xue Y; Drexler HG; Macleod RA; Chen S
    Haematologica; 2011 Dec; 96(12):1808-14. PubMed ID: 21880637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.