These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26208871)

  • 1. Significant feed-forward connectivity revealed by high frequency components of BOLD fMRI signals.
    Lin FH; Chu YH; Hsu YC; Lin JF; Tsai KW; Tsai SY; Kuo WJ
    Neuroimage; 2015 Nov; 121():69-77. PubMed ID: 26208871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating effective brain connectivity from fMRI data: past findings and current issues with reference to Granger causality analysis.
    Deshpande G; Hu X
    Brain Connect; 2012; 2(5):235-45. PubMed ID: 23016794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing fMRI sampling rate improves Granger causality estimates.
    Lin FH; Ahveninen J; Raij T; Witzel T; Chu YH; Jääskeläinen IP; Tsai KW; Kuo WJ; Belliveau JW
    PLoS One; 2014; 9(6):e100319. PubMed ID: 24968356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling.
    Seth AK; Chorley P; Barnett LC
    Neuroimage; 2013 Jan; 65():540-55. PubMed ID: 23036449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG.
    Astolfi L; Cincotti F; Mattia D; Salinari S; Babiloni C; Basilisco A; Rossini PM; Ding L; Ni Y; He B; Marciani MG; Babiloni F
    Magn Reson Imaging; 2004 Dec; 22(10):1457-70. PubMed ID: 15707795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping directed influence over the brain using Granger causality and fMRI.
    Roebroeck A; Formisano E; Goebel R
    Neuroimage; 2005 Mar; 25(1):230-42. PubMed ID: 15734358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lag-based effective connectivity applied to fMRI: a simulation study highlighting dependence on experimental parameters and formulation.
    Rodrigues J; Andrade A
    Neuroimage; 2014 Apr; 89():358-77. PubMed ID: 24513528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State-dependent differences between functional and effective connectivity of the human cortical motor system.
    Rehme AK; Eickhoff SB; Grefkes C
    Neuroimage; 2013 Feb; 67():237-46. PubMed ID: 23201364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs and integration in the resting brain.
    Thompson WH; Fransson P
    Neuroimage; 2015 Nov; 121():227-42. PubMed ID: 26169321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic and electrophysiological spontaneous low-frequency oscillations in the cortex: directional influences revealed by Granger causality.
    Huang L; Liu Y; Li M; Hu D
    Neuroimage; 2014 Jan; 85 Pt 2():810-22. PubMed ID: 23911674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of partial directed coherence to the analysis of resting-state EEG-fMRI data.
    Biazoli CE; Sturzbecher M; White TP; Dos Santos Onias HH; Andrade KC; de Araujo DB; Sato JR
    Brain Connect; 2013; 3(6):563-8. PubMed ID: 23724827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to detect the Granger-causal flow direction in the presence of additive noise?
    Vinck M; Huurdeman L; Bosman CA; Fries P; Battaglia FP; Pennartz CM; Tiesinga PH
    Neuroimage; 2015 Mar; 108():301-18. PubMed ID: 25514516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences.
    Cohen ER; Rostrup E; Sidaros K; Lund TE; Paulson OB; Ugurbil K; Kim SG
    Neuroimage; 2004 Oct; 23(2):613-24. PubMed ID: 15488411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BOLD Granger causality reflects vascular anatomy.
    Webb JT; Ferguson MA; Nielsen JA; Anderson JS
    PLoS One; 2013; 8(12):e84279. PubMed ID: 24349569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing multivariate causal structure between functional brain networks through a Laguerre-Volterra based Granger causality approach.
    Duggento A; Valenza G; Passamonti L; Guerrisi M; Barbieri R; Toschi N
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5477-5480. PubMed ID: 28269497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization.
    Brier MR; Mitra A; McCarthy JE; Ances BM; Snyder AZ
    Neuroimage; 2015 Nov; 121():29-38. PubMed ID: 26208872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for determining frequency- and region-dependent relationships between estimated LFPs and BOLD responses in humans.
    Martuzzi R; Murray MM; Meuli RA; Thiran JP; Maeder PP; Michel CM; Grave de Peralta Menendez R; Gonzalez Andino SL
    J Neurophysiol; 2009 Jan; 101(1):491-502. PubMed ID: 19005004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring temporal dynamics of resting-state fMRI data.
    He L; Hu D; Wan M; Wen Y
    Biomed Mater Eng; 2014; 24(1):939-45. PubMed ID: 24211982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.