These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26209329)

  • 1. Sortin2 enhances endocytic trafficking towards the vacuole in Saccharomyces cerevisiae.
    Vásquez-Soto B; Manríquez N; Cruz-Amaya M; Zouhar J; Raikhel NV; Norambuena L
    Biol Res; 2015 Jul; 48(1):39. PubMed ID: 26209329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of cellular pathways affected by Sortin2, a synthetic compound that affects protein targeting to the vacuole in Saccharomyces cerevisiae.
    Norambuena L; Zouhar J; Hicks GR; Raikhel NV
    BMC Chem Biol; 2008 Jan; 8():1. PubMed ID: 18179719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocytic trafficking towards the vacuole plays a key role in the auxin receptor SCF(TIR)-independent mechanism of lateral root formation in A. thaliana.
    Pérez-Henríquez P; Raikhel NV; Norambuena L
    Mol Plant; 2012 Nov; 5(6):1195-209. PubMed ID: 22848095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae.
    Bonangelino CJ; Chavez EM; Bonifacino JS
    Mol Biol Cell; 2002 Jul; 13(7):2486-501. PubMed ID: 12134085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Inheritance of Aggregated Proteins and Age Reset in Yeast Are Regulated by Vac17-Dependent Vacuolar Functions.
    Hill SM; Hao X; Grönvall J; Spikings-Nordby S; Widlund PO; Amen T; Jörhov A; Josefson R; Kaganovich D; Liu B; Nyström T
    Cell Rep; 2016 Jul; 16(3):826-38. PubMed ID: 27373154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole.
    Bryant NJ; Stevens TH
    Microbiol Mol Biol Rev; 1998 Mar; 62(1):230-47. PubMed ID: 9529893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genome-wide immunodetection screen in S. cerevisiae uncovers novel genes involved in lysosomal vacuole function and morphology.
    Ricarte F; Menjivar R; Chhun S; Soreta T; Oliveira L; Hsueh T; Serranilla M; Gharakhanian E
    PLoS One; 2011; 6(8):e23696. PubMed ID: 21912603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traffic into the prevacuolar/endosomal compartment of Saccharomyces cerevisiae: a VPS45-dependent intracellular route and a VPS45-independent, endocytic route.
    Bryant NJ; Piper RC; Gerrard SR; Stevens TH
    Eur J Cell Biol; 1998 May; 76(1):43-52. PubMed ID: 9650782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of Saccharomyces cerevisiae mutants defective in fluid-phase endocytosis.
    Wiederkehr A; Meier KD; Riezman H
    Yeast; 2001 Jun; 18(8):759-73. PubMed ID: 11378903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation.
    Brown CR; Wolfe AB; Cui D; Chiang HL
    J Biol Chem; 2008 Sep; 283(38):26116-27. PubMed ID: 18660504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Flow Cytometry-Based Phenotypic Screen To Identify Novel Endocytic Factors in
    Wrasman K; Alioto SL; Zhang Y; Hoban K; Khairy M; Goode BL; Wendland B
    G3 (Bethesda); 2018 May; 8(5):1497-1512. PubMed ID: 29540444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defects in intracellular trafficking and endocytic/vacuolar acidification determine the efficiency of endocytotic DNA uptake in yeast.
    Riechers SP; Stahl U; Lang C
    J Cell Biochem; 2009 Feb; 106(2):327-36. PubMed ID: 19115284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Golgi to vacuole delivery pathway in yeast: identification of a sorting determinant and required transport component.
    Cowles CR; Snyder WB; Burd CG; Emr SD
    EMBO J; 1997 May; 16(10):2769-82. PubMed ID: 9184222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening chemical libraries for compounds that affect protein sorting to the yeast vacuole.
    Zouhar J
    Methods Mol Biol; 2014; 1056():125-8. PubMed ID: 24306869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The yeast endocytic membrane transport system.
    Munn AL
    Microsc Res Tech; 2000 Dec; 51(6):547-62. PubMed ID: 11169857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic analysis of severe hypersensitivity to hygromycin B reveals linkage to vacuolar defects and new vacuolar gene functions in Saccharomyces cerevisiae.
    Banuelos MG; Moreno DE; Olson DK; Nguyen Q; Ricarte F; Aguilera-Sandoval CR; Gharakhanian E
    Curr Genet; 2010 Apr; 56(2):121-37. PubMed ID: 20043226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bifurcation of the endocytic pathway into Rab5-dependent and -independent transport to the vacuole.
    Toshima JY; Nishinoaki S; Sato Y; Yamamoto W; Furukawa D; Siekhaus DE; Sawaguchi A; Toshima J
    Nat Commun; 2014 Mar; 5():3498. PubMed ID: 24667230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Legionella pneumophila effector protein, LegC7, alters yeast endosomal trafficking.
    O'Brien KM; Lindsay EL; Starai VJ
    PLoS One; 2015; 10(2):e0116824. PubMed ID: 25643265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrograde lipid traffic in yeast: identification of two distinct pathways for internalization of fluorescent-labeled phosphatidylcholine from the plasma membrane.
    Kean LS; Fuller RS; Nichols JW
    J Cell Biol; 1993 Dec; 123(6 Pt 1):1403-19. PubMed ID: 8253840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorting inhibitors (Sortins): Chemical compounds to study vacuolar sorting in Arabidopsis.
    Zouhar J; Hicks GR; Raikhel NV
    Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9497-501. PubMed ID: 15190181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.