BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26209432)

  • 1. A mutation profile for top-k patient search exploiting Gene-Ontology and orthogonal non-negative matrix factorization.
    Kim S; Sael L; Yu H
    Bioinformatics; 2015 Nov; 31(22):3653-9. PubMed ID: 26209432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous discovery of cancer subtypes and subtype features by molecular data integration.
    Le Van T; van Leeuwen M; Carolina Fierro A; De Maeyer D; Van den Eynden J; Verbeke L; De Raedt L; Marchal K; Nijssen S
    Bioinformatics; 2016 Sep; 32(17):i445-i454. PubMed ID: 27587661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient methods for identifying mutated driver pathways in cancer.
    Zhao J; Zhang S; Wu LY; Zhang XS
    Bioinformatics; 2012 Nov; 28(22):2940-7. PubMed ID: 22982574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data.
    Yang Z; Michailidis G
    Bioinformatics; 2016 Jan; 32(1):1-8. PubMed ID: 26377073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene prioritization using Bayesian matrix factorization with genomic and phenotypic side information.
    Zakeri P; Simm J; Arany A; ElShal S; Moreau Y
    Bioinformatics; 2018 Jul; 34(13):i447-i456. PubMed ID: 29949967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mutation profile for top-k patient search exploiting Gene-Ontology and orthogonal non-negative matrix factorization.
    Kim S; Sael L; Yu H
    Bioinformatics; 2016 Jul; 32(13):2081. PubMed ID: 27153726
    [No Abstract]   [Full Text] [Related]  

  • 7. Transfer learning across ontologies for phenome-genome association prediction.
    Petegrosso R; Park S; Hwang TH; Kuang R
    Bioinformatics; 2017 Feb; 33(4):529-536. PubMed ID: 27797759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating hypertension phenotype and genotype with hybrid non-negative matrix factorization.
    Luo Y; Mao C; Yang Y; Wang F; Ahmad FS; Arnett D; Irvin MR; Shah SJ
    Bioinformatics; 2019 Apr; 35(8):1395-1403. PubMed ID: 30239588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian semi-nonnegative matrix tri-factorization to identify pathways associated with cancer phenotypes.
    Park S; Kar N; Cheong JH; Hwang TH
    Pac Symp Biocomput; 2020; 25():427-438. PubMed ID: 31797616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NegGOA: negative GO annotations selection using ontology structure.
    Fu G; Wang J; Yang B; Yu G
    Bioinformatics; 2016 Oct; 32(19):2996-3004. PubMed ID: 27318205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. jNMFMA: a joint non-negative matrix factorization meta-analysis of transcriptomics data.
    Wang HQ; Zheng CH; Zhao XM
    Bioinformatics; 2015 Feb; 31(4):572-80. PubMed ID: 25411328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. signeR: an empirical Bayesian approach to mutational signature discovery.
    Rosales RA; Drummond RD; Valieris R; Dias-Neto E; da Silva IT
    Bioinformatics; 2017 Jan; 33(1):8-16. PubMed ID: 27591080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrative somatic mutation analysis to identify pathways linked with survival outcomes across 19 cancer types.
    Park S; Kim SJ; Yu D; Peña-Llopis S; Gao J; Park JS; Chen B; Norris J; Wang X; Chen M; Kim M; Yong J; Wardak Z; Choe K; Story M; Starr T; Cheong JH; Hwang TH
    Bioinformatics; 2016 Jun; 32(11):1643-51. PubMed ID: 26635139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous clustering of multiview biomedical data using manifold optimization.
    Yu Y; Zhang LH; Zhang S
    Bioinformatics; 2019 Oct; 35(20):4029-4037. PubMed ID: 30918942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient method to estimate the optimum regularization parameter in RLDA.
    Bakir D; James AP; Zollanvari A
    Bioinformatics; 2016 Nov; 32(22):3461-3468. PubMed ID: 27485443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Information theory applied to the sparse gene ontology annotation network to predict novel gene function.
    Tao Y; Sam L; Li J; Friedman C; Lussier YA
    Bioinformatics; 2007 Jul; 23(13):i529-38. PubMed ID: 17646340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PATIENT-SPECIFIC DATA FUSION FOR CANCER STRATIFICATION AND PERSONALISED TREATMENT.
    Gligorijević V; Malod-Dognin N; Pržulj N
    Pac Symp Biocomput; 2016; 21():321-32. PubMed ID: 26776197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving molecular cancer class discovery through sparse non-negative matrix factorization.
    Gao Y; Church G
    Bioinformatics; 2005 Nov; 21(21):3970-5. PubMed ID: 16244221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pyNBS: a Python implementation for network-based stratification of tumor mutations.
    Huang JK; Jia T; Carlin DE; Ideker T
    Bioinformatics; 2018 Aug; 34(16):2859-2861. PubMed ID: 29608663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer mutational signatures representation by large-scale context embedding.
    Zhang Y; Xiao Y; Yang M; Ma J
    Bioinformatics; 2020 Jul; 36(Suppl_1):i309-i316. PubMed ID: 32657413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.