These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 26209463)

  • 1. Origins of feature selectivities and maps in the mammalian primary visual cortex.
    Vidyasagar TR; Eysel UT
    Trends Neurosci; 2015 Aug; 38(8):475-85. PubMed ID: 26209463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparseness of coding in area 17 of the cat visual cortex: a comparison between pinwheel centres and orientation domains.
    Jayakumar J; Hu D; Vidyasagar TR
    Neuroscience; 2012 Dec; 225():55-64. PubMed ID: 22963796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of feedforward geniculate inputs in the generation of orientation selectivity in the cat's primary visual cortex.
    Viswanathan S; Jayakumar J; Vidyasagar TR
    J Physiol; 2011 May; 589(Pt 9):2349-61. PubMed ID: 21486788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity.
    Wörgötter F; Koch C
    J Neurosci; 1991 Jul; 11(7):1959-79. PubMed ID: 2066770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex.
    Nakagama H; Tani T; Tanaka S
    Neurosci Res; 2006 Aug; 55(4):370-82. PubMed ID: 16780978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for the origin and development of visual orientation selectivity.
    Nguyen G; Freeman AW
    PLoS Comput Biol; 2019 Jul; 15(7):e1007254. PubMed ID: 31356590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined Hebbian development of geniculocortical and lateral connectivity in a model of primary visual cortex.
    Bartsch AP; van Hemmen JL
    Biol Cybern; 2001 Jan; 84(1):41-55. PubMed ID: 11204398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dynamics of visual responses in the primary visual cortex.
    Shapley R; Hawken M; Xing D
    Prog Brain Res; 2007; 165():21-32. PubMed ID: 17925238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex.
    Chapman B; Zahs KR; Stryker MP
    J Neurosci; 1991 May; 11(5):1347-58. PubMed ID: 2027051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling corticofugal feedback and the sensitivity of lateral geniculate neurons to orientation discontinuity.
    Hayot F; Tranchina D
    Vis Neurosci; 2001; 18(6):865-77. PubMed ID: 12020077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of Orientation Selectivity in the Primary Visual Cortex.
    Priebe NJ
    Annu Rev Vis Sci; 2016 Oct; 2():85-107. PubMed ID: 28532362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional cell classes and functional architecture in the early visual system of a highly visual rodent.
    Van Hooser SD; Heimel JA; Nelson SB
    Prog Brain Res; 2005; 149():127-45. PubMed ID: 16226581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural mechanisms of orientation selectivity in the visual cortex.
    Ferster D; Miller KD
    Annu Rev Neurosci; 2000; 23():441-71. PubMed ID: 10845071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity.
    Troyer TW; Krukowski AE; Priebe NJ; Miller KD
    J Neurosci; 1998 Aug; 18(15):5908-27. PubMed ID: 9671678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity.
    Eguchi A; Neymotin SA; Stringer SM
    Front Neural Circuits; 2014; 8():16. PubMed ID: 24659956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural connections and receptive field properties in the primary visual cortex.
    Alonso JM
    Neuroscientist; 2002 Oct; 8(5):443-56. PubMed ID: 12374429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models.
    Suder K; Funke K; Zhao Y; Kerscher N; Wennekers T; Wörgötter F
    Exp Brain Res; 2002 Jun; 144(4):430-44. PubMed ID: 12037629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional mapping of horizontal connections in developing ferret visual cortex: experiments and modeling.
    Weliky M; Katz LC
    J Neurosci; 1994 Dec; 14(12):7291-305. PubMed ID: 7996176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation selectivity of thalamic input to simple cells of cat visual cortex.
    Ferster D; Chung S; Wheat H
    Nature; 1996 Mar; 380(6571):249-52. PubMed ID: 8637573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.