BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 26209551)

  • 1. Pathogenesis of myeloproliferative neoplasms.
    Skoda RC; Duek A; Grisouard J
    Exp Hematol; 2015 Aug; 43(8):599-608. PubMed ID: 26209551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focus on the epigenome in the myeloproliferative neoplasms.
    Kim E; Abdel-Wahab O
    Hematology Am Soc Hematol Educ Program; 2013; 2013():538-44. PubMed ID: 24319229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unfolding the Role of Calreticulin in Myeloproliferative Neoplasm Pathogenesis.
    Merlinsky TR; Levine RL; Pronier E
    Clin Cancer Res; 2019 May; 25(10):2956-2962. PubMed ID: 30655313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants.
    Chachoua I; Pecquet C; El-Khoury M; Nivarthi H; Albu RI; Marty C; Gryshkova V; Defour JP; Vertenoeil G; Ngo A; Koay A; Raslova H; Courtoy PJ; Choong ML; Plo I; Vainchenker W; Kralovics R; Constantinescu SN
    Blood; 2016 Mar; 127(10):1325-35. PubMed ID: 26668133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy.
    Pasquier F; Cabagnols X; Secardin L; Plo I; Vainchenker W
    Clin Lymphoma Myeloma Leuk; 2014 Sep; 14 Suppl():S23-35. PubMed ID: 25486952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic deregulated miR-375 contributes to the constitutive activation of JAK2/STAT signaling in myeloproliferative neoplasm.
    Yin LH; Zheng XQ; Li HY; Bi LX; Shi YF; Ye AF; Wu JB; Gao SM
    Leuk Res; 2015 Apr; 39(4):471-8. PubMed ID: 25666256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneity in myeloproliferative neoplasms: Causes and consequences.
    O'Sullivan J; Mead AJ
    Adv Biol Regul; 2019 Jan; 71():55-68. PubMed ID: 30528537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. JAK-STAT signaling in the therapeutic landscape of myeloproliferative neoplasms.
    O'Sullivan JM; Harrison CN
    Mol Cell Endocrinol; 2017 Aug; 451():71-79. PubMed ID: 28167129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remodeling the Bone Marrow Microenvironment - A Proposal for Targeting Pro-inflammatory Contributors in MPN.
    Jutzi JS; Mullally A
    Front Immunol; 2020; 11():2093. PubMed ID: 32983162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis.
    Rampal R; Al-Shahrour F; Abdel-Wahab O; Patel JP; Brunel JP; Mermel CH; Bass AJ; Pretz J; Ahn J; Hricik T; Kilpivaara O; Wadleigh M; Busque L; Gilliland DG; Golub TR; Ebert BL; Levine RL
    Blood; 2014 May; 123(22):e123-33. PubMed ID: 24740812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A primer on genomic and epigenomic alterations in the myeloproliferative neoplasms.
    Rampal R; Levine RL
    Best Pract Res Clin Haematol; 2014 Jun; 27(2):83-93. PubMed ID: 25189720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexisting driver mutations in MPN: clinical and molecular characteristics of a series of 11 patients.
    De Roeck L; Michaux L; Debackere K; Lierman E; Vandenberghe P; Devos T
    Hematology; 2018 Dec; 23(10):785-792. PubMed ID: 29993347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Molecularly pathogenesis and molecular targeted therapy for myeloproliferative neoplasms].
    Shide K
    Rinsho Ketsueki; 2015 Feb; 56(2):150-8. PubMed ID: 25765794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in understanding the pathogenesis of familial myeloproliferative neoplasms.
    Rumi E; Cazzola M
    Br J Haematol; 2017 Sep; 178(5):689-698. PubMed ID: 28444727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin.
    Edahiro Y; Araki M; Komatsu N
    Cancer Sci; 2020 Aug; 111(8):2682-2688. PubMed ID: 32462673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microarray and Proteomic Analyses of Myeloproliferative Neoplasms with a Highlight on the mTOR Signaling Pathway.
    Čokić VP; Mossuz P; Han J; Socoro N; Beleslin-Čokić BB; Mitrović O; Subotički T; Diklić M; Leković D; Gotić M; Puri RK; Noguchi CT; Schechter AN
    PLoS One; 2015; 10(8):e0135463. PubMed ID: 26275051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutant calreticulin in myeloproliferative neoplasms.
    How J; Hobbs GS; Mullally A
    Blood; 2019 Dec; 134(25):2242-2248. PubMed ID: 31562135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Somatic mutations of calreticulin in myeloproliferative neoplasms.
    Imai M; Araki M; Komatsu N
    Int J Hematol; 2017 Jun; 105(6):743-747. PubMed ID: 28470469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation.
    Elf S; Abdelfattah NS; Chen E; Perales-Patón J; Rosen EA; Ko A; Peisker F; Florescu N; Giannini S; Wolach O; Morgan EA; Tothova Z; Losman JA; Schneider RK; Al-Shahrour F; Mullally A
    Cancer Discov; 2016 Apr; 6(4):368-81. PubMed ID: 26951227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myeloproliferative Neoplasms: Molecular Drivers and Therapeutics.
    Reuther GW
    Prog Mol Biol Transl Sci; 2016; 144():437-484. PubMed ID: 27865464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.