BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26209965)

  • 1. Pendant small functional groups on poly(ϵ-caprolactone) substrate modulate adhesion, proliferation and differentiation of human mesenchymal stem cells.
    Chen M; Zhang Y; Zhou Y; Zhang Y; Lang M; Ye Z; Tan WS
    Colloids Surf B Biointerfaces; 2015 Oct; 134():322-31. PubMed ID: 26209965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(ε-caprolactone)-based substrates bearing pendant small chemical groups as a platform for systemic investigation of chondrogenesis.
    Chen M; Xu L; Zhou Y; Zhang Y; Lang M; Ye Z; Tan WS
    Cell Prolif; 2016 Aug; 49(4):512-22. PubMed ID: 27364032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combinatorial variation in surface chemistry and pore size of three-dimensional porous poly(ε-caprolactone) scaffolds modulates the behaviors of mesenchymal stem cells.
    Zhao Y; Tan K; Zhou Y; Ye Z; Tan WS
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():193-202. PubMed ID: 26652364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of bone marrow stromal cell behaviors on poly(caprolactone) with or without surface modification: studies on cell adhesion, survival and proliferation.
    Zhang H; Hollister S
    J Biomater Sci Polym Ed; 2009; 20(14):1975-93. PubMed ID: 19874672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoblasts on rod shaped hydroxyapatite nanoparticles incorporated PCL film provide an optimal osteogenic niche for stem cell differentiation.
    Lu Z; Roohani-Esfahani SI; Kwok PC; Zreiqat H
    Tissue Eng Part A; 2011 Jun; 17(11-12):1651-61. PubMed ID: 21306280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved osteogenic differentiation of human marrow stromal cells cultured on ion-induced chemically structured poly-epsilon-caprolactone.
    Marletta G; Ciapetti G; Satriano C; Perut F; Salerno M; Baldini N
    Biomaterials; 2007 Feb; 28(6):1132-40. PubMed ID: 17118444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological behavior of mesenchymal stem cells on poly-ε-caprolactone filaments and a strategy for tissue engineering of segments of the peripheral nerves.
    Carrier-Ruiz A; Evaristo-Mendonça F; Mendez-Otero R; Ribeiro-Resende VT
    Stem Cell Res Ther; 2015 Jul; 6(1):128. PubMed ID: 26149068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrosprayed hydroxyapatite on polymer nanofibers to differentiate mesenchymal stem cells to osteogenesis.
    Venugopal J; Rajeswari R; Shayanti M; Low S; Bongso A; Dev VR; Deepika G; Choon AT; Ramakrishna S
    J Biomater Sci Polym Ed; 2013; 24(2):170-84. PubMed ID: 22370175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelatin nanoparticles loaded poly(ε-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering.
    Binulal NS; Natarajan A; Menon D; Bhaskaran VK; Mony U; Nair SV
    Biomed Mater; 2012 Dec; 7(6):065001. PubMed ID: 23047255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface properties of amino-functionalized poly(ε-caprolactone) membranes and the improvement of human mesenchymal stem cell behavior.
    Zhang Y; Zhang Y; Chen M; Yan J; Ye Z; Zhou Y; Tan W; Lang M
    J Colloid Interface Sci; 2012 Feb; 368(1):64-9. PubMed ID: 22154913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators.
    Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV
    Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human mesenchymal stem cell response to poly(ε-caprolactone/poly(methyl methacrylate) demixed thin films.
    Khattak M; Pu F; Curran JM; Hunt JA; D'Sa RA
    J Mater Sci Mater Med; 2015 May; 26(5):178. PubMed ID: 25893385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalized PCL/HA nanocomposites as microporous membranes for bone regeneration.
    Basile MA; d'Ayala GG; Malinconico M; Laurienzo P; Coudane J; Nottelet B; Ragione FD; Oliva A
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():457-68. PubMed ID: 25579947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate.
    Curran JM; Chen R; Hunt JA
    Biomaterials; 2006 Sep; 27(27):4783-93. PubMed ID: 16735063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.
    Ambre AH; Katti DR; Katti KS
    J Biomed Mater Res A; 2015 Jun; 103(6):2077-101. PubMed ID: 25331212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of hydroxyl-functionalized caprolactone copolymers and their effect on adhesion, proliferation, and differentiation of human mesenchymal stem cells.
    Seyednejad H; Vermonden T; Fedorovich NE; van Eijk R; van Steenbergen MJ; Dhert WJ; van Nostrum CF; Hennink WE
    Biomacromolecules; 2009 Nov; 10(11):3048-54. PubMed ID: 19807059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined Chemical Groups and Topographical Nanopattern on the Poly(ε-Caprolactone) Surface for Regulating Human Foreskin Fibroblasts Behavior.
    Zhang Y; Du X; Hu D; Zhang J; Zhou Y; Min G; Lang M
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7720-8. PubMed ID: 26950754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore size and LbL chitosan coating influence mesenchymal stem cell in vitro fibrosis and biomineralization in 3D porous poly(epsilon-caprolactone) scaffolds.
    Mehr NG; Li X; Chen G; Favis BD; Hoemann CD
    J Biomed Mater Res A; 2015 Jul; 103(7):2449-59. PubMed ID: 25504184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of neural stem cells on electrospun poly(epsilon-caprolactone) submicron scaffolds: evaluating their potential in neural tissue engineering.
    Nisbet DR; Yu LM; Zahir T; Forsythe JS; Shoichet MS
    J Biomater Sci Polym Ed; 2008; 19(5):623-34. PubMed ID: 18419941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of poly(ε-caprolactone) surface properties for apatite formation and improved osteogenic stimulation.
    Choong C; Yuan S; Thian ES; Oyane A; Triffitt J
    J Biomed Mater Res A; 2012 Feb; 100(2):353-61. PubMed ID: 22065559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.