BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26210010)

  • 21. Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters.
    Hornig S; Heinze T
    Biomacromolecules; 2008 May; 9(5):1487-92. PubMed ID: 18393524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly.
    Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ
    J Chem Phys; 2011 Nov; 135(18):184903. PubMed ID: 22088077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication via a nonaqueous nanoprecipitation method, characterization and in vitro biological behavior of N(6)-cyclopentyladenosine-loaded nanoparticles.
    Dalpiaz A; Vighi E; Pavan B; Leo E
    J Pharm Sci; 2009 Nov; 98(11):4272-84. PubMed ID: 19283768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of environmentally biodegradable lignin nanoparticles.
    Frangville C; Rutkevičius M; Richter AP; Velev OD; Stoyanov SD; Paunov VN
    Chemphyschem; 2012 Dec; 13(18):4235-43. PubMed ID: 23047584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles.
    Bilati U; Allémann E; Doelker E
    Eur J Pharm Sci; 2005 Jan; 24(1):67-75. PubMed ID: 15626579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoprecipitation for Poorly Water-Soluble Drugs.
    Nguyen TNG; Tran VT; Duan W; Tran PHL; Tran TTD
    Curr Drug Metab; 2017; 18(11):1000-1015. PubMed ID: 28982324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of curcumin nanoparticles by flash nanoprecipitation from emulsions.
    Margulis K; Magdassi S; Lee HS; Macosko CW
    J Colloid Interface Sci; 2014 Nov; 434():65-70. PubMed ID: 25168584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using the polymeric ouzo effect for the preparation of polysaccharide-based nanoparticles.
    Aschenbrenner E; Bley K; Koynov K; Makowski M; Kappl M; Landfester K; Weiss CK
    Langmuir; 2013 Jul; 29(28):8845-55. PubMed ID: 23777243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting the complex phase behavior of self-assembling drug delivery nanoparticles.
    Le TC; Mulet X; Burden FR; Winkler DA
    Mol Pharm; 2013 Apr; 10(4):1368-77. PubMed ID: 23464802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improvement of nanoprecipitation technique for preparation of gelatin nanoparticles and potential macromolecular drug loading.
    Khan SA; Schneider M
    Macromol Biosci; 2013 Apr; 13(4):455-63. PubMed ID: 23427187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery.
    Chan JM; Zhang L; Yuet KP; Liao G; Rhee JW; Langer R; Farokhzad OC
    Biomaterials; 2009 Mar; 30(8):1627-34. PubMed ID: 19111339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solvent injection-lyophilization of tert-butyl alcohol/water cosolvent systems for the preparation of drug-loaded solid lipid nanoparticles.
    Wang T; Wang N; Zhang Y; Shen W; Gao X; Li T
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):254-61. PubMed ID: 20447810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoparticles via nanoprecipitation process.
    Minost A; Delaveau J; Bolzinger MA; Fessi H; Elaissari A
    Recent Pat Drug Deliv Formul; 2012 Dec; 6(3):250-8. PubMed ID: 22845041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles.
    Niu X; Zou W; Liu C; Zhang N; Fu C
    Drug Dev Ind Pharm; 2009 Nov; 35(11):1375-83. PubMed ID: 19832638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of physicochemical properties in the nanoprecipitation of cellulose acetate.
    Ghasemi SM; Alavifar SS
    Carbohydr Polym; 2020 Feb; 230():115628. PubMed ID: 31887871
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heat induced evaporative antisolvent nanoprecipitation (HIEAN) of itraconazole.
    Mugheirbi NA; Paluch KJ; Tajber L
    Int J Pharm; 2014 Aug; 471(1-2):400-11. PubMed ID: 24879938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol-water mixed solvent.
    Dang F; Enomoto N; Hojo J; Enpuku K
    Ultrason Sonochem; 2009 Jun; 16(5):649-54. PubMed ID: 19112040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of polymeric nanoparticles with highly entrapped herbal hydrophilic drug using nanoprecipitation technique: an approach of quality by design.
    Vuddanda PR; Mishra A; Singh SK; Singh S
    Pharm Dev Technol; 2015; 20(5):579-87. PubMed ID: 24831535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size Control in the Nanoprecipitation Process of Stable Iodine (¹²⁷I) Using Microchannel Reactor-Optimization by Artificial Neural Networks.
    Aghajani MH; Pashazadeh AM; Mostafavi SH; Abbasi S; Hajibagheri-Fard MJ; Assadi M; Aghajani M
    AAPS PharmSciTech; 2015 Oct; 16(5):1059-68. PubMed ID: 25652731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Micellization of alkyl-propoxy-ethoxylate surfactants in water-polar organic solvent mixtures.
    Sarkar B; Lam S; Alexandridis P
    Langmuir; 2010 Jul; 26(13):10532-40. PubMed ID: 20334370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.