BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 26210139)

  • 1. Highly charged cellulose-based nanocrystals as flocculants for harvesting Chlorella vulgaris.
    Vandamme D; Eyley S; Van den Mooter G; Muylaert K; Thielemans W
    Bioresour Technol; 2015 Oct; 194():270-5. PubMed ID: 26210139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine betaine grafted nanocellulose as an effective and bio-based cationic nanocellulose flocculant for wastewater treatment and microalgal harvesting.
    Blockx J; Verfaillie A; Deschaume O; Bartic C; Muylaert K; Thielemans W
    Nanoscale Adv; 2021 Jul; 3(14):4133-4144. PubMed ID: 36132828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-tunable polymers as reversible and recyclable flocculants for the dewatering of microalgae.
    Morrissey KL; He C; Wong MH; Zhao X; Chapman RZ; Bender SL; Prevatt WD; Stoykovich MP
    Biotechnol Bioeng; 2015 Jan; 112(1):74-83. PubMed ID: 25060233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harvesting of marine microalgae using cationic cellulose nanocrystals.
    Verfaillie A; Blockx J; Praveenkumar R; Thielemans W; Muylaert K
    Carbohydr Polym; 2020 Jul; 240():116165. PubMed ID: 32475603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO₂ controlled flocculation of microalgae using pH responsive cellulose nanocrystals.
    Eyley S; Vandamme D; Lama S; Van den Mooter G; Muylaert K; Thielemans W
    Nanoscale; 2015 Sep; 7(34):14413-21. PubMed ID: 26248574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology.
    Bayat Tork M; Khalilzadeh R; Kouchakzadeh H
    Bioresour Technol; 2017 Nov; 243():583-588. PubMed ID: 28704739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable branched cationic starch with high C/N ratio for Chlorella vulgaris cells concentration: Regulating microalgae flocculation performance by pH.
    Huang Y; Wei C; Liao Q; Xia A; Zhu X; Zhu X
    Bioresour Technol; 2019 Mar; 276():133-139. PubMed ID: 30623867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective harvesting of microalgae: Comparison of different polymeric flocculants.
    Gerchman Y; Vasker B; Tavasi M; Mishael Y; Kinel-Tahan Y; Yehoshua Y
    Bioresour Technol; 2017 Mar; 228():141-146. PubMed ID: 28061396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods coagulation/flocculation and flocculation with ballast agent for effective harvesting of microalgae.
    Gorin KV; Sergeeva YE; Butylin VV; Komova AV; Pojidaev VM; Badranova GU; Shapovalova AA; Konova IA; Gotovtsev PM
    Bioresour Technol; 2015 Oct; 193():178-84. PubMed ID: 26133475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harvesting freshwater Chlorella vulgaris with flocculant derived from spent brewer's yeast.
    Prochazkova G; Kastanek P; Branyik T
    Bioresour Technol; 2015 Feb; 177():28-33. PubMed ID: 25479390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Harvesting of Chlorella vulgaris Using Combined Flocculants.
    Ma X; Zheng H; Zhou W; Liu Y; Chen P; Ruan R
    Appl Biochem Biotechnol; 2016 Oct; 180(4):791-804. PubMed ID: 27206558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave assisted flocculation for harvesting of Chlorella vulgaris.
    Liu W; Cui Y; Cheng P; Huo S; Ma X; Chen Q; Cobb K; Chen P; Ma J; Gao X; Ruan R
    Bioresour Technol; 2020 Oct; 314():123770. PubMed ID: 32652448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effect and mechanisms of compound bioflocculant and AlCl3 salts on enhancing Chlorella regularis harvesting.
    Zhang C; Wang X; Wang Y; Li Y; Zhou D; Jia Y
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5653-60. PubMed ID: 27102131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergy of flocculation and flotation for microalgae harvesting using aluminium electrolysis.
    Shi W; Zhu L; Chen Q; Lu J; Pan G; Hu L; Yi Q
    Bioresour Technol; 2017 Jun; 233():127-133. PubMed ID: 28260663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation.
    Vandamme D; Foubert I; Fraeye I; Muylaert K
    Bioresour Technol; 2012 Nov; 124():508-11. PubMed ID: 23010213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.
    Kan KH; Li J; Wijesekera K; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3130-9. PubMed ID: 23865631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cationic polymers for successful flocculation of marine microalgae.
    't Lam GP; Vermuë MH; Olivieri G; van den Broek LAM; Barbosa MJ; Eppink MHM; Wijffels RH; Kleinegris DMM
    Bioresour Technol; 2014 Oct; 169():804-807. PubMed ID: 25113884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dosage effect of cationic polymers on the flocculation efficiency of the marine microalga Neochloris oleoabundans.
    't Lam GP; Zegeye EK; Vermuë MH; Kleinegris DM; Eppink MH; Wijffels RH; Olivieri G
    Bioresour Technol; 2015 Dec; 198():797-802. PubMed ID: 26454366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid, efficient and eco-friendly approach for simultaneous biomass harvesting and bioproducts extraction from microalgae: Dual flocculation between cationic surfactants and bio-polymer.
    Taghavijeloudar M; Yaqoubnejad P; Ahangar AK; Rezania S
    Sci Total Environ; 2023 Jan; 854():158717. PubMed ID: 36108873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive analysis of an effective flocculation method for high quality microalgal biomass harvesting.
    Labeeuw L; Commault AS; Kuzhiumparambil U; Emmerton B; Nguyen LN; Nghiem LD; Ralph PJ
    Sci Total Environ; 2021 Jan; 752():141708. PubMed ID: 32892040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.