These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26210174)

  • 1. Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: Model, production and in vivo biocompatibility.
    Bendali A; Rousseau L; Lissorgues G; Scorsone E; Djilas M; Dégardin J; Dubus E; Fouquet S; Benosman R; Bergonzo P; Sahel JA; Picaud S
    Biomaterials; 2015 Oct; 67():73-83. PubMed ID: 26210174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation.
    Djilas M; Olès C; Lorach H; Bendali A; Dégardin J; Dubus E; Lissorgues-Bazin G; Rousseau L; Benosman R; Ieng SH; Joucla S; Yvert B; Bergonzo P; Sahel J; Picaud S
    J Neural Eng; 2011 Aug; 8(4):046020. PubMed ID: 21701056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy.
    Hébert C; Cottance M; Degardin J; Scorsone E; Rousseau L; Lissorgues G; Bergonzo P; Picaud S
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():77-84. PubMed ID: 27612691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis.
    Hadjinicolaou AE; Leung RT; Garrett DJ; Ganesan K; Fox K; Nayagam DA; Shivdasani MN; Meffin H; Ibbotson MR; Prawer S; O'Brien BJ
    Biomaterials; 2012 Aug; 33(24):5812-20. PubMed ID: 22613134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boron doped diamond biotechnology: from sensors to neurointerfaces.
    Hébert C; Scorsone E; Bendali A; Kiran R; Cottance M; Girard HA; Degardin J; Dubus E; Lissorgues G; Rousseau L; Mailley P; Picaud S; Bergonzo P
    Faraday Discuss; 2014; 172():47-59. PubMed ID: 25259508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.
    Chader GJ; Weiland J; Humayun MS
    Prog Brain Res; 2009; 175():317-32. PubMed ID: 19660665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diamond penetrating electrode array for epi-retinal prosthesis.
    Ganesan K; Stacey A; Meffin H; Lichter S; Greferath U; Fletcher EL; Prawer S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6757-60. PubMed ID: 21095833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual electrodes by current steering in retinal prostheses.
    Dumm G; Fallon JB; Williams CE; Shivdasani MN
    Invest Ophthalmol Vis Sci; 2014 Oct; 55(12):8077-85. PubMed ID: 25335975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Operational challenges of retinal prostheses.
    Schmid EW; Fink W; Wilke R
    Med Eng Phys; 2014 Dec; 36(12):1644-55. PubMed ID: 25443535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraocular retinal prosthesis.
    Humayun MS
    Trans Am Ophthalmol Soc; 2001; 99():271-300. PubMed ID: 11797315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D flexible microelectrode array for subretinal stimulation.
    Seo HW; Kim N; Ahn J; Cha S; Goo YS; Kim S
    J Neural Eng; 2019 Aug; 16(5):056016. PubMed ID: 31357188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved visual acuity using a retinal implant and an optimized stimulation strategy.
    Tong W; Stamp M; Apollo NV; Ganesan K; Meffin H; Prawer S; Garrett DJ; Ibbotson MR
    J Neural Eng; 2019 Dec; 17(1):016018. PubMed ID: 31665704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants.
    Wilke RG; Moghadam GK; Lovell NH; Suaning GJ; Dokos S
    J Neural Eng; 2011 Aug; 8(4):046016. PubMed ID: 21673395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of pillar electrodes in subretinal prosthesis for enhanced proximity to target neurons.
    Flores T; Lei X; Huang T; Lorach H; Dalal R; Galambos L; Kamins T; Mathieson K; Palanker D
    J Neural Eng; 2018 Jun; 15(3):036011. PubMed ID: 29388561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual cortex responses to single- and simultaneous multiple-electrode stimulation of the retina: implications for retinal prostheses.
    Shivdasani MN; Fallon JB; Luu CD; Cicione R; Allen PJ; Morley JW; Williams CE
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6291-300. PubMed ID: 22899754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach towards a minimal invasive retina implant.
    Gerding H
    J Neural Eng; 2007 Mar; 4(1):S30-7. PubMed ID: 17325414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a very large array for retinal stimulation.
    Waschkowski F; Brockmann C; Laube T; Mokwa W; Roessler G; Walter P
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2748-51. PubMed ID: 24110296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Vision restoration with implants in retinal degenerations].
    Kusnyerik A; Resch M; Roska T; Karacs K; Gekeler F; Wilke R; Benav H; Zrenner E; Süveges I; Németh J
    Orv Hetil; 2011 Apr; 152(14):537-45. PubMed ID: 21436016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.