These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 26210284)
1. Efficacy of a novel antimicrobial peptide against periodontal pathogens in both planktonic and polymicrobial biofilm states. Wang HY; Cheng JW; Yu HY; Lin L; Chih YH; Pan YP Acta Biomater; 2015 Oct; 25():150-61. PubMed ID: 26210284 [TBL] [Abstract][Full Text] [Related]
2. The Effects of Antimicrobial Peptide Nal-P-113 on Inhibiting Periodontal Pathogens and Improving Periodontal Status. Wang H; Ai L; Zhang Y; Cheng J; Yu H; Li C; Zhang D; Pan Y; Lin L Biomed Res Int; 2018; 2018():1805793. PubMed ID: 29736391 [TBL] [Abstract][Full Text] [Related]
3. In vitro activity of Carvacrol against titanium-adherent oral biofilms and planktonic cultures. Ciandrini E; Campana R; Federici S; Manti A; Battistelli M; Falcieri E; Papa S; Baffone W Clin Oral Investig; 2014 Nov; 18(8):2001-13. PubMed ID: 24458367 [TBL] [Abstract][Full Text] [Related]
4. Molecular pathways underlying inhibitory effect of antimicrobial peptide Nal-P-113 on bacteria biofilms formation of Porphyromonas gingivalis W83 by DNA microarray. Wang HY; Lin L; Tan LS; Yu HY; Cheng JW; Pan YP BMC Microbiol; 2017 Feb; 17(1):37. PubMed ID: 28212615 [TBL] [Abstract][Full Text] [Related]
5. Characterization and application of a flow system for in vitro multispecies oral biofilm formation. Blanc V; Isabal S; Sánchez MC; Llama-Palacios A; Herrera D; Sanz M; León R J Periodontal Res; 2014 Jun; 49(3):323-32. PubMed ID: 23815431 [TBL] [Abstract][Full Text] [Related]
6. Design and surface immobilization of short anti-biofilm peptides. Mishra B; Lushnikova T; Golla RM; Wang X; Wang G Acta Biomater; 2017 Feb; 49():316-328. PubMed ID: 27915018 [TBL] [Abstract][Full Text] [Related]
7. Fusobacterium nucleatum Metabolically Integrates Commensals and Pathogens in Oral Biofilms. Sakanaka A; Kuboniwa M; Shimma S; Alghamdi SA; Mayumi S; Lamont RJ; Fukusaki E; Amano A mSystems; 2022 Aug; 7(4):e0017022. PubMed ID: 35852319 [TBL] [Abstract][Full Text] [Related]
8. Quantitation of biofilm and planktonic life forms of coexisting periodontal species. Karched M; Bhardwaj RG; Inbamani A; Asikainen S Anaerobe; 2015 Oct; 35(Pt A):13-20. PubMed ID: 25926392 [TBL] [Abstract][Full Text] [Related]
9. Antimicrobial photodynamic therapy alone or in combination with antibiotic local administration against biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis. Tavares LJ; de Avila ED; Klein MI; Panariello BHD; Spolidório DMP; Pavarina AC J Photochem Photobiol B; 2018 Nov; 188():135-145. PubMed ID: 30267963 [TBL] [Abstract][Full Text] [Related]
10. Photodynamic antimicrobial effect of safranine O on an ex vivo periodontal biofilm. Voos AC; Kranz S; Tonndorf-Martini S; Voelpel A; Sigusch H; Staudte H; Albrecht V; Sigusch BW Lasers Surg Med; 2014 Mar; 46(3):235-43. PubMed ID: 24473989 [TBL] [Abstract][Full Text] [Related]
11. A novel hydroxyapatite-binding antimicrobial peptide against oral biofilms. Yang Y; Xia L; Haapasalo M; Wei W; Zhang D; Ma J; Shen Y Clin Oral Investig; 2019 Jun; 23(6):2705-2712. PubMed ID: 30353289 [TBL] [Abstract][Full Text] [Related]
12. Quantitative real-time PCR combined with propidium monoazide for the selective quantification of viable periodontal pathogens in an in vitro subgingival biofilm model. Sánchez MC; Marín MJ; Figuero E; Llama-Palacios A; León R; Blanc V; Herrera D; Sanz M J Periodontal Res; 2014 Feb; 49(1):20-8. PubMed ID: 23581569 [TBL] [Abstract][Full Text] [Related]
13. Effects of Antimicrobial Peptide GH12 on the Cariogenic Properties and Composition of a Cariogenic Multispecies Biofilm. Jiang W; Wang Y; Luo J; Li X; Zhou X; Li W; Zhang L Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30341079 [TBL] [Abstract][Full Text] [Related]
15. Design of a hydroxyapatite-binding antimicrobial peptide with improved retention and antibacterial efficacy for oral pathogen control. Huang ZB; Shi X; Mao J; Gong SQ Sci Rep; 2016 Dec; 6():38410. PubMed ID: 27910930 [TBL] [Abstract][Full Text] [Related]
16. Investigating the biological properties of carbohydrate derived fulvic acid (CHD-FA) as a potential novel therapy for the management of oral biofilm infections. Sherry L; Millhouse E; Lappin DF; Murray C; Culshaw S; Nile CJ; Ramage G BMC Oral Health; 2013 Sep; 13():47. PubMed ID: 24063298 [TBL] [Abstract][Full Text] [Related]
17. Nanoparticle-encapsulated chlorhexidine against oral bacterial biofilms. Seneviratne CJ; Leung KC; Wong CH; Lee SF; Li X; Leung PC; Lau CB; Wat E; Jin L PLoS One; 2014; 9(8):e103234. PubMed ID: 25170958 [TBL] [Abstract][Full Text] [Related]
18. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide. Wang Z; de la Fuente-Núñez C; Shen Y; Haapasalo M; Hancock RE PLoS One; 2015; 10(7):e0132512. PubMed ID: 26168273 [TBL] [Abstract][Full Text] [Related]
19. Rice peptide with amino acid substitution inhibits biofilm formation by Porphyromonas gingivalis and Fusobacterium nucleatum. Matsugishi A; Aoki-Nonaka Y; Yokoji-Takeuchi M; Yamada-Hara M; Mikami Y; Hayatsu M; Terao Y; Domon H; Taniguchi M; Takahashi N; Yamazaki K; Tabeta K Arch Oral Biol; 2021 Jan; 121():104956. PubMed ID: 33157493 [TBL] [Abstract][Full Text] [Related]
20. Effect of the antimicrobial decapeptide KSL on the growth of oral pathogens and Streptococcus mutans biofilm. Liu Y; Wang L; Zhou X; Hu S; Zhang S; Wu H Int J Antimicrob Agents; 2011 Jan; 37(1):33-8. PubMed ID: 20956070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]