BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

867 related articles for article (PubMed ID: 26210353)

  • 1. Biology of the bone marrow microenvironment and myelodysplastic syndromes.
    Rankin EB; Narla A; Park JK; Lin S; Sakamoto KM
    Mol Genet Metab; 2015; 116(1-2):24-8. PubMed ID: 26210353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality?
    Pleyer L; Valent P; Greil R
    Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27355944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone marrow niche in the myelodysplastic syndromes.
    Cogle CR; Saki N; Khodadi E; Li J; Shahjahani M; Azizidoost S
    Leuk Res; 2015 Oct; 39(10):1020-7. PubMed ID: 26276090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bone marrow stem stromal imbalance--a key feature of disease progression in case of myelodysplastic mouse model.
    Das M; Chatterjee S; Basak P; Das P; Pereira JA; Dutta RK; Chaklader M; Chaudhuri S; Law S
    J Stem Cells; 2010; 5(2):49-64. PubMed ID: 22049615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inappropriate Notch activity and limited mesenchymal stem cell plasticity in the bone marrow of patients with myelodysplastic syndromes.
    Varga G; Kiss J; Várkonyi J; Vas V; Farkas P; Pálóczi K; Uher F
    Pathol Oncol Res; 2007; 13(4):311-9. PubMed ID: 18158566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Bone Marrow Microenvironment and Myelodysplastic Syndromes--Review].
    Zhang GC; Wang HQ; Shao ZH
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2016 Feb; 24(1):290-4. PubMed ID: 26913439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research advance of hematopoietic microenvironment for myelodysplastic syndromes].
    Fei CM; Chang CK
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2012 Oct; 20(5):1246-50. PubMed ID: 23114158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biologic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes.
    Kastrinaki MC; Pontikoglou C; Klaus M; Stavroulaki E; Pavlaki K; Papadaki HA
    Curr Stem Cell Res Ther; 2011 Jun; 6(2):122-30. PubMed ID: 20528751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of bone marrow microenvironment could change how myelodysplastic syndromes are diagnosed and treated.
    Aanei CM; Catafal LC
    Cytometry A; 2018 Jul; 93(9):916-928. PubMed ID: 30211968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CXCL12+ stromal cells as bone marrow niche for CD34+ hematopoietic cells and their association with disease progression in myelodysplastic syndromes.
    Abe-Suzuki S; Kurata M; Abe S; Onishi I; Kirimura S; Nashimoto M; Murayama T; Hidaka M; Kitagawa M
    Lab Invest; 2014 Nov; 94(11):1212-23. PubMed ID: 25199050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into the molecular pathophysiology of myelodysplastic syndromes: targets for novel therapy.
    Zahid MF; Patnaik MM; Gangat N; Hashmi SK; Rizzieri DA
    Eur J Haematol; 2016 Oct; 97(4):313-20. PubMed ID: 27147278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aging- and Senescence-associated Changes of Mesenchymal Stromal Cells in Myelodysplastic Syndromes.
    Mattiucci D; Maurizi G; Leoni P; Poloni A
    Cell Transplant; 2018 May; 27(5):754-764. PubMed ID: 29682980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The microenvironment in myelodysplastic syndromes: Niche-mediated disease initiation and progression.
    Li AJ; Calvi LM
    Exp Hematol; 2017 Nov; 55():3-18. PubMed ID: 28826860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming growth factor β1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia.
    Geyh S; Rodríguez-Paredes M; Jäger P; Koch A; Bormann F; Gutekunst J; Zilkens C; Germing U; Kobbe G; Lyko F; Haas R; Schroeder T
    Haematologica; 2018 Sep; 103(9):1462-1471. PubMed ID: 29773599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic modeling study on the pathogenic role of p38 MAPK activation in myelodysplastic syndromes.
    Peng H; Wen J; Zhang L; Li H; Chang CC; Zu Y; Zhou X
    Mol Biosyst; 2012 Apr; 8(4):1366-74. PubMed ID: 22327869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome.
    Balderman SR; Li AJ; Hoffman CM; Frisch BJ; Goodman AN; LaMere MW; Georger MA; Evans AG; Liesveld JL; Becker MW; Calvi LM
    Blood; 2016 Feb; 127(5):616-25. PubMed ID: 26637787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of stromal function, and its potential contribution to deregulation of hematopoiesis in the myelodysplastic syndromes.
    Tauro S; Hepburn MD; Bowen DT; Pippard MJ
    Haematologica; 2001 Oct; 86(10):1038-45. PubMed ID: 11602409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes.
    Xiong H; Yang XY; Han J; Wang Q; Zou ZL
    Braz J Med Biol Res; 2015 Mar; 48(3):207-13. PubMed ID: 25608238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What is the role of the microenvironment in MDS?
    Calvi LM; Li AJ; Becker MW
    Best Pract Res Clin Haematol; 2019 Dec; 32(4):101113. PubMed ID: 31779976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p53 expression in myeloid cells of myelodysplastic syndromes. Association with evolution of overt leukemia.
    Kitagawa M; Yoshida S; Kuwata T; Tanizawa T; Kamiyama R
    Am J Pathol; 1994 Aug; 145(2):338-44. PubMed ID: 8053492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.