BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26210447)

  • 1. Quantification of Ataxin-3 and Ataxin-7 aggregates formed in vivo in Drosophila reveals a threshold of aggregated polyglutamine proteins associated with cellular toxicity.
    Vinatier G; Corsi JM; Mignotte B; Gaumer S
    Biochem Biophys Res Commun; 2015 Sep; 464(4):1060-1065. PubMed ID: 26210447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examination of Ataxin-3 (atx-3) Aggregation by Structural Mass Spectrometry Techniques: A Rationale for Expedited Aggregation upon Polyglutamine (polyQ) Expansion.
    Scarff CA; Almeida B; Fraga J; Macedo-Ribeiro S; Radford SE; Ashcroft AE
    Mol Cell Proteomics; 2015 May; 14(5):1241-53. PubMed ID: 25700012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity and aggregation of the polyglutamine disease protein, ataxin-3 is regulated by its binding to VCP/p97 in Drosophila melanogaster.
    Ristic G; Sutton JR; Libohova K; Todi SV
    Neurobiol Dis; 2018 Aug; 116():78-92. PubMed ID: 29704548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PolyQ-expanded proteins impair cellular proteostasis of ataxin-3 through sequestering the co-chaperone HSJ1 into aggregates.
    Yue HW; Hong JY; Zhang SX; Jiang LL; Hu HY
    Sci Rep; 2021 Apr; 11(1):7815. PubMed ID: 33837238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antisense oligonucleotide-mediated exon skipping as a strategy to reduce proteolytic cleavage of ataxin-3.
    Toonen LJ; Schmidt I; Luijsterburg MS; van Attikum H; van Roon-Mom WM
    Sci Rep; 2016 Oct; 6():35200. PubMed ID: 27731380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of the polyglutamine protein ataxin-3 with Rad23 regulates toxicity in Drosophila models of Spinocerebellar Ataxia Type 3.
    Sutton JR; Blount JR; Libohova K; Tsou WL; Joshi GS; Paulson HL; Costa MDC; Scaglione KM; Todi SV
    Hum Mol Genet; 2017 Apr; 26(8):1419-1431. PubMed ID: 28158474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyglutamine tracts regulate beclin 1-dependent autophagy.
    Ashkenazi A; Bento CF; Ricketts T; Vicinanza M; Siddiqi F; Pavel M; Squitieri F; Hardenberg MC; Imarisio S; Menzies FM; Rubinsztein DC
    Nature; 2017 May; 545(7652):108-111. PubMed ID: 28445460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ubiquitin-interacting motifs of ataxin-3 regulate its polyglutamine toxicity through Hsc70-4-dependent aggregation.
    Johnson SL; Ranxhi B; Libohova K; Tsou WL; Todi SV
    Elife; 2020 Sep; 9():. PubMed ID: 32955441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fine balance between Prpf19 and Exoc7 in achieving degradation of aggregated protein and suppression of cell death in spinocerebellar ataxia type 3.
    Chen ZS; Huang X; Talbot K; Chan HYE
    Cell Death Dis; 2021 Feb; 12(2):136. PubMed ID: 33542212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Live-cell imaging reveals divergent intracellular dynamics of polyglutamine disease proteins and supports a sequestration model of pathogenesis.
    Chai Y; Shao J; Miller VM; Williams A; Paulson HL
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9310-5. PubMed ID: 12084819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel polyglutamine model uncouples proteotoxicity from aging.
    Christie NT; Lee AL; Fay HG; Gray AA; Kikis EA
    PLoS One; 2014; 9(5):e96835. PubMed ID: 24817148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutant Ataxin-3-Containing Aggregates (MATAGGs) in Spinocerebellar Ataxia Type 3: Dynamics of the Disorder.
    Raj K; Akundi RS
    Mol Neurobiol; 2021 Jul; 58(7):3095-3118. PubMed ID: 33629274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational targeting of fibrillar polyglutamine proteins in live cells escalates aggregation and cytotoxicity.
    Kvam E; Nannenga BL; Wang MS; Jia Z; Sierks MR; Messer A
    PLoS One; 2009 May; 4(5):e5727. PubMed ID: 19492089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70.
    Warrick JM; Chan HY; Gray-Board GL; Chai Y; Paulson HL; Bonini NM
    Nat Genet; 1999 Dec; 23(4):425-8. PubMed ID: 10581028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyglutamine expansion diseases: More than simple repeats.
    Silva A; de Almeida AV; Macedo-Ribeiro S
    J Struct Biol; 2018 Feb; 201(2):139-154. PubMed ID: 28928079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging causes distinct characteristics of polyglutamine amyloids in vivo.
    Tonoki A; Kuranaga E; Ito N; Nekooki-Machida Y; Tanaka M; Miura M
    Genes Cells; 2011 May; 16(5):557-64. PubMed ID: 21466635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila.
    Chan HY; Warrick JM; Gray-Board GL; Paulson HL; Bonini NM
    Hum Mol Genet; 2000 Nov; 9(19):2811-20. PubMed ID: 11092757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyglutamine-Independent Features in Ataxin-3 Aggregation and Pathogenesis of Machado-Joseph Disease.
    Carvalho AL; Silva A; Macedo-Ribeiro S
    Adv Exp Med Biol; 2018; 1049():275-288. PubMed ID: 29427109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential toxicity of ataxin-3 isoforms in Drosophila models of Spinocerebellar Ataxia Type 3.
    Johnson SL; Blount JR; Libohova K; Ranxhi B; Paulson HL; Tsou WL; Todi SV
    Neurobiol Dis; 2019 Dec; 132():104535. PubMed ID: 31310802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CDK5 protects from caspase-induced Ataxin-3 cleavage and neurodegeneration.
    Liman J; Deeg S; Voigt A; Voßfeldt H; Dohm CP; Karch A; Weishaupt J; Schulz JB; Bähr M; Kermer P
    J Neurochem; 2014 Jun; 129(6):1013-23. PubMed ID: 24548080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.