These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26210478)

  • 1. Effect of added autochthonous yeasts on the volatile compounds of dry-cured hams.
    Simoncini N; Pinna A; Toscani T; Virgili R
    Int J Food Microbiol; 2015 Nov; 212():25-33. PubMed ID: 26210478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of a selected fungal population to the volatile compounds on dry-cured ham.
    Martín A; Córdoba JJ; Aranda E; Córdoba MG; Asensio MA
    Int J Food Microbiol; 2006 Jul; 110(1):8-18. PubMed ID: 16564595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocontrol of Penicillium nordicum growth and ochratoxin A production by native yeasts of dry cured ham.
    Virgili R; Simoncini N; Toscani T; Camardo Leggieri M; Formenti S; Battilani P
    Toxins (Basel); 2012 Feb; 4(2):68-82. PubMed ID: 22474567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics and characterization of yeasts during ripening of typical Italian dry-cured ham.
    Simoncini N; Rotelli D; Virgili R; Quintavalla S
    Food Microbiol; 2007 Sep; 24(6):577-84. PubMed ID: 17418308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of ochratoxigenic moulds by Debaryomyces hansenii strains for biopreservation of dry-cured meat products.
    Andrade MJ; Thorsen L; Rodríguez A; Córdoba JJ; Jespersen L
    Int J Food Microbiol; 2014 Jan; 170():70-7. PubMed ID: 24291184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of a selected fungal population to proteolysis on dry-cured ham.
    Martín A; Córdoba JJ; Núñez F; Benito MJ; Asensio MA
    Int J Food Microbiol; 2004 Jul; 94(1):55-66. PubMed ID: 15172485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of yeasts isolated from dry-cured ham to control ochratoxin A production in meat models.
    Peromingo B; Núñez F; Rodríguez A; Alía A; Andrade MJ
    Int J Food Microbiol; 2018 Mar; 268():73-80. PubMed ID: 29335227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Penicillium populations in dry-cured ham manufacturing plants.
    Battilani P; Pietri VA; Giorni P; Formenti S; Bertuzzi T; Toscani T; Virgili R; Kozakiewicz Z
    J Food Prot; 2007 Apr; 70(4):975-80. PubMed ID: 17477269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitiveness of three biocontrol candidates against ochratoxigenic Penicillium nordicum under dry-cured meat environmental and nutritional conditions.
    Álvarez M; Núñez F; Delgado J; Andrade MJ; Rodríguez M; Rodríguez A
    Fungal Biol; 2021 Feb; 125(2):134-142. PubMed ID: 33518203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of the Combined Protective Cultures of
    Cebrián E; Rodríguez M; Peromingo B; Bermúdez E; Núñez F
    Toxins (Basel); 2019 Dec; 11(12):. PubMed ID: 31817538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocontrol of ochratoxigenic Penicillium nordicum in dry-cured fermented sausages by Debaryomyces hansenii and Staphylococcus xylosus.
    Cebrián E; Núñez F; Álvarez M; Roncero E; Rodríguez M
    Int J Food Microbiol; 2022 Aug; 375():109744. PubMed ID: 35660256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of Debaryomyces hansenii, Candida deformans and Candida zeylanoides on the aroma formation of dry-cured "lacón".
    Purriños L; Carballo J; Lorenzo JM
    Meat Sci; 2013 Feb; 93(2):344-50. PubMed ID: 23102730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative proteomic profiling of ochratoxin A repression in Penicillium nordicum by protective cultures.
    Delgado J; Núñez F; Asensio MA; Owens RA
    Int J Food Microbiol; 2019 Sep; 305():108243. PubMed ID: 31200120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Debaryomyces hansenii strains inoculation on the quality of slow dry-cured fermented sausages.
    Cano-García L; Belloch C; Flores M
    Meat Sci; 2014 Apr; 96(4):1469-77. PubMed ID: 24423452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of Listeria monocytogenes during dry-cured ham processing.
    Montiel R; Peirotén Á; Ortiz S; Bravo D; Gaya P; Martínez-Suárez JV; Tapiador J; Nuñez M; Medina M
    Int J Food Microbiol; 2020 Apr; 318():108469. PubMed ID: 31837591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between ecophysiological factors, growth and ochratoxin A contamination of dry-cured sausage based matrices.
    Rodríguez A; Capela D; Medina Á; Córdoba JJ; Magan N
    Int J Food Microbiol; 2015 Feb; 194():71-7. PubMed ID: 25437060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of ochratoxin A on adaptation of Penicillium nordicum on a NaCl-rich dry-cured ham-based medium.
    Delgado J; da Cruz Cabral L; Rodríguez M; Rodríguez A
    Int J Food Microbiol; 2018 May; 272():22-28. PubMed ID: 29505956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Penicillium chrysogenum and Debaryomyces hansenii on the volatile compounds during controlled ripening of pork loins.
    Martín A; Córdoba JJ; Benito MJ; Aranda E; Asensio MA
    Int J Food Microbiol; 2003 Aug; 84(3):327-38. PubMed ID: 12810295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of yeasts growing on dry-cured Iberian ham by mitochondrial DNA restriction analysis, RAPD-PCR and their volatile compounds production.
    Andrade MJ; Rodríguez M; Casado EM; Bermúdez E; Córdoba JJ
    Food Microbiol; 2009 Sep; 26(6):578-86. PubMed ID: 19527832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and control of moulds responsible for black spot spoilage in dry-cured ham.
    Alía A; Andrade MJ; Rodríguez A; Reyes-Prieto M; Bernáldez V; Córdoba JJ
    Meat Sci; 2016 Dec; 122():16-24. PubMed ID: 27468139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.