These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26210528)

  • 1. Nitrogen recovery from pig slurry in a two-chambered bioelectrochemical system.
    Sotres A; Cerrillo M; Viñas M; Bonmatí A
    Bioresour Technol; 2015 Oct; 194():373-82. PubMed ID: 26210528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative assessment of raw and digested pig slurry treatment in bioelectrochemical systems.
    Cerrillo M; Oliveras J; Viñas M; Bonmatí A
    Bioelectrochemistry; 2016 Aug; 110():69-78. PubMed ID: 27093494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial community dynamics in continuous microbial fuel cells fed with synthetic wastewater and pig slurry.
    Sotres A; Tey L; Bonmatí A; Viñas M
    Bioelectrochemistry; 2016 Oct; 111():70-82. PubMed ID: 27243446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overcoming organic and nitrogen overload in thermophilic anaerobic digestion of pig slurry by coupling a microbial electrolysis cell.
    Cerrillo M; Viñas M; Bonmatí A
    Bioresour Technol; 2016 Sep; 216():362-72. PubMed ID: 27259192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater.
    Kim JR; Zuo Y; Regan JM; Logan BE
    Biotechnol Bioeng; 2008 Apr; 99(5):1120-7. PubMed ID: 17972328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding nitrogen recovery from wastewater with a high nitrogen concentration using microbial electrolysis cells.
    San-Martín MI; Mateos R; Escapa A; Morán A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(5):472-477. PubMed ID: 30676914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor.
    Sayess RR; Saikaly PE; El-Fadel M; Li D; Semerjian L
    Water Res; 2013 Feb; 47(2):881-94. PubMed ID: 23219389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaseous nitrogen and bacterial responses to raw and digested dairy manure applications in incubated soil.
    Saunders OE; Fortuna AM; Harrison JH; Cogger CG; Whitefield E; Green T
    Environ Sci Technol; 2012 Nov; 46(21):11684-92. PubMed ID: 22971014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air stripping of ammonia from pig slurry: characterisation and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion.
    Bonmatí A; Flotats X
    Waste Manag; 2003; 23(3):261-72. PubMed ID: 12737968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ammonia stripping of biologically treated liquid manure.
    Alitalo A; Kyrö A; Aura E
    J Environ Qual; 2012; 41(1):273-80. PubMed ID: 22218195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping.
    Ippersiel D; Mondor M; Lamarche F; Tremblay F; Dubreuil J; Masse L
    J Environ Manage; 2012 Mar; 95 Suppl():S165-9. PubMed ID: 21658837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ammonia stripping and use of additives on separation of solids, phosphorus, copper and zinc from liquid fractions of animal slurries.
    Cattaneo M; Finzi A; Guido V; Riva E; Provolo G
    Sci Total Environ; 2019 Jul; 672():30-39. PubMed ID: 30954821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor.
    Wu X; Modin O
    Bioresour Technol; 2013 Oct; 146():530-536. PubMed ID: 23973971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Management strategy impacts on ammonia volatilization from swine manure.
    Panetta DM; Powers WJ; Lorimor JC
    J Environ Qual; 2005; 34(3):1119-30. PubMed ID: 15888898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of covering pig slurry stores on the ammonia emission processes.
    Portejoie S; Martinez J; Guiziou F; Coste CM
    Bioresour Technol; 2003 May; 87(3):199-207. PubMed ID: 12507857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial community composition and electricity generation in cattle manure slurry treatment using microbial fuel cells: effects of inoculum addition.
    Xie B; Gong W; Ding A; Yu H; Qu F; Tang X; Yan Z; Li G; Liang H
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23226-23235. PubMed ID: 28831702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioelectrochemically-assisted ammonia recovery from dairy manure.
    Burns M; Tang H; Larson RA; Qin M
    Water Res; 2024 Mar; 252():121243. PubMed ID: 38330718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and application of pH- and salt-resistant Bacillus strains to reduce ammonia emission from pig manure during the storage period.
    Shen W; Dai H; Gu S; Guo F; Li T; Rajasekar A
    J Appl Microbiol; 2023 Jul; 134(7):. PubMed ID: 37401147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the potential of slurry management technologies to reduce the constraints of environmental legislation on pig production.
    Hutchings NJ; ten Hoeve M; Jensen R; Bruun S; Søtoft LF
    J Environ Manage; 2013 Nov; 130():447-56. PubMed ID: 24184986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate.
    Huang W; Huang W; Yuan T; Zhao Z; Cai W; Zhang Z; Lei Z; Feng C
    Water Res; 2016 Mar; 90():344-353. PubMed ID: 26766158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.