These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26211245)

  • 1. [Finite Element Analysis of Effect of Key Dimension of Nitinol Stent on Its Fatigue Behaviour].
    Li J; Wang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Apr; 32(2):305-10. PubMed ID: 26211245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue and durability of Nitinol stents.
    Pelton AR; Schroeder V; Mitchell MR; Gong XY; Barney M; Robertson SW
    J Mech Behav Biomed Mater; 2008 Apr; 1(2):153-64. PubMed ID: 19627780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-objective optimization of nitinol stent design.
    Alaimo G; Auricchio F; Conti M; Zingales M
    Med Eng Phys; 2017 Sep; 47():13-24. PubMed ID: 28705512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element analysis for fatigue behaviour of a self-expanding Nitinol peripheral stent under physiological biomechanical conditions.
    Lei L; Qi X; Li S; Yang Y; Hu Y; Li B; Zhao S; Zhang Y
    Comput Biol Med; 2019 Jan; 104():205-214. PubMed ID: 30529572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Optimization based on finite element technique of nitinol stent].
    Lin F; Liu X; Huang N; Gao Q; Li Z; Yao T; Luo Q; Huang J
    Zhongguo Yi Liao Qi Xie Za Zhi; 2014 Mar; 38(2):98-101. PubMed ID: 24941770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses.
    Dordoni E; Meoli A; Wu W; Dubini G; Migliavacca F; Pennati G; Petrini L
    Med Eng Phys; 2014 Jul; 36(7):842-9. PubMed ID: 24721457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico fatigue optimization of TAVR stent designs with physiological motion in a beating heart model.
    Baylous K; Helbock R; Kovarovic B; Anam S; Slepian M; Bluestein D
    Comput Methods Programs Biomed; 2024 Jan; 243():107886. PubMed ID: 37925854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational mechanics of Nitinol stent grafts.
    Kleinstreuer C; Li Z; Basciano CA; Seelecke S; Farber MA
    J Biomech; 2008 Aug; 41(11):2370-8. PubMed ID: 18644312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational study of fatigue resistance of nitinol stents subjected to walk-induced femoropopliteal artery motion.
    He R; Zhao LG; Silberschmidt VV; Willcock H
    J Biomech; 2021 Mar; 118():110295. PubMed ID: 33578053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delivery and release of nitinol stent in carotid artery and their interactions: a finite element analysis.
    Wu W; Qi M; Liu XP; Yang DZ; Wang WQ
    J Biomech; 2007; 40(13):3034-40. PubMed ID: 17511995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitinol Stent Oversizing in Patients Undergoing Popliteal Artery Revascularization: A Finite Element Study.
    Gökgöl C; Diehm N; Nezami FR; Büchler P
    Ann Biomed Eng; 2015 Dec; 43(12):2868-80. PubMed ID: 26101031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design optimization of stent and its dilatation balloon using kriging surrogate model.
    Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B
    Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitinol stent design - understanding axial buckling.
    McGrath DJ; O Brien B; Bruzzi M; McHugh PE
    J Mech Behav Biomed Mater; 2014 Dec; 40():252-263. PubMed ID: 25255420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of second-generation stents for application in the superficial femoral artery: an in vitro evaluation focusing on stent design.
    Müller-Hülsbeck S; Schäfer PJ; Charalambous N; Yagi H; Heller M; Jahnke T
    J Endovasc Ther; 2010 Dec; 17(6):767-76. PubMed ID: 21142489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Numerical modeling of shape memory alloy vascular stent's self-expandable progress and "optimized grid" of stent].
    Xu Q; Liu Y; Wang B; He J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1101-6. PubMed ID: 19024455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis of NiTi self-expandable heart valve stent.
    Salemizadeh Parizi F; Mehrabi R; Karamooz-Ravari MR
    Proc Inst Mech Eng H; 2019 Oct; 233(10):1042-1050. PubMed ID: 31354047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Looped ends versus open ends braided stent: A comparison of the mechanical behaviour using analytical and numerical methods.
    Shanahan C; Tiernan P; Tofail SAM
    J Mech Behav Biomed Mater; 2017 Nov; 75():581-591. PubMed ID: 28863400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and evaluation of the crimping of a hooked self-expandable caval valve stent for the treatment of tricuspid regurgitation.
    Praveen Kumar G; Liang Leo H; Cui F
    Comput Methods Biomech Biomed Engin; 2019 Apr; 22(5):533-546. PubMed ID: 30773049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of self-expanding nitinol stent in a curved artery: impact of stent length and deployment orientation.
    Zhao S; Gu L; Froemming SR
    J Biomech Eng; 2012 Jul; 134(7):. PubMed ID: 24763629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Finite Element Analysis of Biodegradable Polylactic Acid Stent].
    Yan W; Yao T
    Zhongguo Yi Liao Qi Xie Za Zhi; 2018 Jan; 42(1):14-17. PubMed ID: 29862738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.