BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 26211252)

  • 21. CRISPR Content Correlates with the Pathogenic Potential of Escherichia coli.
    García-Gutiérrez E; Almendros C; Mojica FJ; Guzmán NM; García-Martínez J
    PLoS One; 2015; 10(7):e0131935. PubMed ID: 26136211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cas and Contact-Dependent Secretion Systems Present on Excisable Pathogenicity Islands with Conserved Recombination Modules.
    Carpenter MR; Kalburge SS; Borowski JD; Peters MC; Colwell RR; Boyd EF
    J Bacteriol; 2017 May; 199(10):. PubMed ID: 28264992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of 67 Confirmed Clustered Regularly Interspaced Short Palindromic Repeats Loci in 52 Strains of
    Wang Y; Mao T; Li Y; Xiao W; Liang X; Duan G; Yang H
    Front Microbiol; 2021; 12():736565. PubMed ID: 34751223
    [No Abstract]   [Full Text] [Related]  

  • 24. Clustered regularly interspaced short palindromic repeats (CRISPRs) for the genotyping of bacterial pathogens.
    Grissa I; Vergnaud G; Pourcel C
    Methods Mol Biol; 2009; 551():105-16. PubMed ID: 19521870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR regulation of intraspecies diversification by limiting IS transposition and intercellular recombination.
    Watanabe T; Nozawa T; Aikawa C; Amano A; Maruyama F; Nakagawa I
    Genome Biol Evol; 2013; 5(6):1099-114. PubMed ID: 23661565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of the structures of confirmed and questionable CRISPR loci in 325 Staphylococcus genomes.
    Zhang M; Bi C; Wang M; Fu H; Mu Z; Zhu Y; Yan Z
    J Basic Microbiol; 2019 Sep; 59(9):901-913. PubMed ID: 31347199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational Detection of CRISPR/crRNA Targets.
    Biswas A; Fineran PC; Brown CM
    Methods Mol Biol; 2015; 1311():77-89. PubMed ID: 25981467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Clustered regularly interspaced short palindromic repeats: structure, function and application--a review].
    Cui Y; Li Y; Yan Y; Yang R
    Wei Sheng Wu Xue Bao; 2008 Nov; 48(11):1549-55. PubMed ID: 19149174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin.
    Bolotin A; Quinquis B; Sorokin A; Ehrlich SD
    Microbiology (Reading); 2005 Aug; 151(Pt 8):2551-2561. PubMed ID: 16079334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of potential targets of Porphyromonas CRISPRs among the genomes of Porphyromonas species.
    Watanabe T; Shibasaki M; Maruyama F; Sekizaki T; Nakagawa I
    PLoS One; 2017; 12(8):e0183752. PubMed ID: 28837670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of CRISPR/Cas system of Proteus and the factors affected the functional mechanism.
    Qu D; Lu S; Wang P; Jiang M; Yi S; Han J
    Life Sci; 2019 Aug; 231():116531. PubMed ID: 31175856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems.
    Burmistrz M; Dudek B; Staniec D; Rodriguez Martinez JI; Bochtler M; Potempa J; Pyrc K
    J Bacteriol; 2015 Aug; 197(16):2631-41. PubMed ID: 26013482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lactobacillus buchneri genotyping on the basis of clustered regularly interspaced short palindromic repeat (CRISPR) locus diversity.
    Briner AE; Barrangou R
    Appl Environ Microbiol; 2014 Feb; 80(3):994-1001. PubMed ID: 24271175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].
    Xia K; Liang XL; Li YD
    Yi Chuan; 2015 Dec; 37(12):1242-50. PubMed ID: 26704949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats.
    Grissa I; Vergnaud G; Pourcel C
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W52-7. PubMed ID: 17537822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational prediction of CRISPR cassettes in gut metagenome samples from Chinese type-2 diabetic patients and healthy controls.
    Mangericao TC; Peng Z; Zhang X
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):5. PubMed ID: 26818725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPRdigger: detecting CRISPRs with better direct repeat annotations.
    Ge R; Mai G; Wang P; Zhou M; Luo Y; Cai Y; Zhou F
    Sci Rep; 2016 Sep; 6():32942. PubMed ID: 27596864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clustered regularly interspaced short palindromic repeats (CRISPRs) analysis of members of the Mycobacterium tuberculosis complex.
    Botelho A; Canto A; Leão C; Cunha MV
    Methods Mol Biol; 2015; 1247():373-89. PubMed ID: 25399110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics and immune functions of the endogenous CRISPR-Cas systems in myxobacteria.
    Hu W-f; Yang J-y; Wang J-j; Yuan S-f; Yue X-j; Zhang Z; Zhang Y-q; Meng J-y; Li Y-z
    mSystems; 2024 Jun; 9(6):e0121023. PubMed ID: 38747603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting.
    Guo L; Xu K; Liu Z; Zhang C; Xin Y; Zhang Z
    Anal Biochem; 2015 Jun; 478():131-3. PubMed ID: 25748774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.