These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 26211270)
1. [A Feature Extraction Method for Brain Computer Interface Based on Multivariate Empirical Mode Decomposition]. Wang J; Liu Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Apr; 32(2):451-4, 464. PubMed ID: 26211270 [TBL] [Abstract][Full Text] [Related]
2. [A novel method of multi-channel feature extraction combining multivariate autoregression and multiple-linear principal component analysis]. Wang J; Zhang Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Feb; 32(1):19-24. PubMed ID: 25997260 [TBL] [Abstract][Full Text] [Related]
3. EEG rhythm separation and time-frequency analysis of fast multivariate empirical mode decomposition for motor imagery BCI. Jiao Y; Zheng Q; Qiao D; Lang X; Xie L; Pan Y Biol Cybern; 2024 Apr; 118(1-2):21-37. PubMed ID: 38472417 [TBL] [Abstract][Full Text] [Related]
4. [Research on magnetoencephalography-brain computer interface based on the PCA and LDA data reduction]. Wang J; Zhou L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Dec; 28(6):1069-74. PubMed ID: 22295687 [TBL] [Abstract][Full Text] [Related]
5. Quantifying mode mixing and leakage in multivariate empirical mode decomposition and application in motor imagery-based brain-computer interface system. Zheng Y; Xu G Med Biol Eng Comput; 2019 Jun; 57(6):1297-1311. PubMed ID: 30737625 [TBL] [Abstract][Full Text] [Related]
6. An effective feature extraction method by power spectral density of EEG signal for 2-class motor imagery-based BCI. Kim C; Sun J; Liu D; Wang Q; Paek S Med Biol Eng Comput; 2018 Sep; 56(9):1645-1658. PubMed ID: 29497931 [TBL] [Abstract][Full Text] [Related]
7. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals. Zarei R; He J; Siuly S; Zhang Y Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489 [TBL] [Abstract][Full Text] [Related]
8. Classification of motor imagery BCI using multivariate empirical mode decomposition. Park C; Looney D; Naveed ur Rehman ; Ahrabian A; Mandic DP IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):10-22. PubMed ID: 23204288 [TBL] [Abstract][Full Text] [Related]
9. Sinusoidal Signal Assisted Multivariate Empirical Mode Decomposition for Brain-Computer Interfaces. Ge S; Shi YH; Wang RM; Lin P; Gao JF; Sun GP; Iramina K; Yang YK; Leng Y; Wang HX; Zheng WM IEEE J Biomed Health Inform; 2018 Sep; 22(5):1373-1384. PubMed ID: 29990114 [TBL] [Abstract][Full Text] [Related]
10. Improving classification accuracy using fuzzy method for BCI signals. Wei Y; Jun Y; Lin S; Hong L Biomed Mater Eng; 2014; 24(6):2937-43. PubMed ID: 25227000 [TBL] [Abstract][Full Text] [Related]
11. [Motor Imagery Electroencephalogram Feature Selection Algorithm Based on Mutual Information and Principal Component Analysis]. Xu J; Zuo G Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):201-7. PubMed ID: 29708316 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear and nonstationary framework for feature extraction and classification of motor imagery. Trad D; Al-ani T; Monacelli E; Jemni M IEEE Int Conf Rehabil Robot; 2011; 2011():5975488. PubMed ID: 22275685 [TBL] [Abstract][Full Text] [Related]
13. [Tensor Feature Extraction Using Multi-linear Principal Component Analysis for Brain Computer Interface]. Wang J; Yang L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Jun; 32(3):526-30. PubMed ID: 26485972 [TBL] [Abstract][Full Text] [Related]
14. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface. Siuly ; Li Y; Paul Wen P Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135 [TBL] [Abstract][Full Text] [Related]
15. [Research of classification about BCI based on the signals energy]. Qiao J; Hu P; Hong J Zhongguo Yi Liao Qi Xie Za Zhi; 2014 Jan; 38(1):14-8. PubMed ID: 24839840 [TBL] [Abstract][Full Text] [Related]
16. EEG feature selection method based on decision tree. Duan L; Ge H; Ma W; Miao J Biomed Mater Eng; 2015; 26 Suppl 1():S1019-25. PubMed ID: 26405856 [TBL] [Abstract][Full Text] [Related]
17. Approximation-based common principal component for feature extraction in multi-class brain-computer interfaces. Hoang T; Tran D; Huang X Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5061-4. PubMed ID: 24110873 [TBL] [Abstract][Full Text] [Related]
18. Adaptive-projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain-computer interface applications. Hemakom A; Goverdovsky V; Looney D; Mandic DP Philos Trans A Math Phys Eng Sci; 2016 Apr; 374(2065):20150199. PubMed ID: 26953174 [TBL] [Abstract][Full Text] [Related]
19. A self produced mother wavelet feature extraction method for motor imagery brain-computer interface. Yeh WL; Huang YC; Chiou JH; Duann JR; Chiou JC Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4302-5. PubMed ID: 24110684 [TBL] [Abstract][Full Text] [Related]
20. [Study on the method of feature extraction for brain-computer interface using discriminative common vector]. Wang J; Hu B Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Feb; 30(1):12-5, 27. PubMed ID: 23488130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]