BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 26211445)

  • 1. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.
    McDole B; Isgor C; Pare C; Guthrie K
    Neuroscience; 2015 Sep; 304():146-60. PubMed ID: 26211445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early synapse formation in developing interneurons of the adult olfactory bulb.
    Panzanelli P; Bardy C; Nissant A; Pallotto M; Sassoè-Pognetto M; Lledo PM; Fritschy JM
    J Neurosci; 2009 Dec; 29(48):15039-52. PubMed ID: 19955355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Specialization of Interneuron Dendrites: Identification of Action Potential Initiation Zone in Axonless Olfactory Bulb Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2019 Dec; 39(49):9674-9688. PubMed ID: 31662426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Principal cell activity induces spine relocation of adult-born interneurons in the olfactory bulb.
    Breton-Provencher V; Bakhshetyan K; Hardy D; Bammann RR; Cavarretta F; Snapyan M; Côté D; Migliore M; Saghatelyan A
    Nat Commun; 2016 Aug; 7():12659. PubMed ID: 27578235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.
    Sun X; Liu X; Starr ER; Liu S
    J Neurosci; 2020 Aug; 40(32):6189-6206. PubMed ID: 32605937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of Granule Cell Interneurons by Two Divergent Local Circuit Pathways in the Rat Olfactory Bulb.
    Pressler RT; Strowbridge BW
    J Neurosci; 2020 Dec; 40(50):9701-9714. PubMed ID: 33234611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity of dendrodendritic microcircuits following mitral cell loss in the olfactory bulb of the murine mutant Purkinje cell degeneration.
    Greer CA; Halász N
    J Comp Neurol; 1987 Feb; 256(2):284-98. PubMed ID: 3558882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Recording of Dendrodendritic Excitation in the Olfactory Bulb: Divergent Properties of Local and External Glutamatergic Inputs Govern Synaptic Integration in Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2017 Dec; 37(49):11774-11788. PubMed ID: 29066560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bdnf mRNA splice variants differentially impact CA1 and CA3 dendrite complexity and spine morphology in the hippocampus.
    Maynard KR; Hobbs JW; Sukumar M; Kardian AS; Jimenez DV; Schloesser RJ; Martinowich K
    Brain Struct Funct; 2017 Sep; 222(7):3295-3307. PubMed ID: 28324222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Golgi analyses of dendritic organization among denervated olfactory bulb granule cells.
    Greer CA
    J Comp Neurol; 1987 Mar; 257(3):442-52. PubMed ID: 2435770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-derived neurotrophic factor induces rapid morphological changes in dendritic spines of olfactory bulb granule cells in cultured slices through the modulation of glutamatergic signaling.
    Matsutani S; Yamamoto N
    Neuroscience; 2004; 123(3):695-702. PubMed ID: 14706781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-derived neurotrophic factor selectively regulates dendritogenesis of parvalbumin-containing interneurons in the main olfactory bulb through the PLCgamma pathway.
    Berghuis P; Agerman K; Dobszay MB; Minichiello L; Harkany T; Ernfors P
    J Neurobiol; 2006 Nov; 66(13):1437-51. PubMed ID: 17013928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Npas4 regulates Mdm2 and thus Dcx in experience-dependent dendritic spine development of newborn olfactory bulb interneurons.
    Yoshihara S; Takahashi H; Nishimura N; Kinoshita M; Asahina R; Kitsuki M; Tatsumi K; Furukawa-Hibi Y; Hirai H; Nagai T; Yamada K; Tsuboi A
    Cell Rep; 2014 Aug; 8(3):843-57. PubMed ID: 25088421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles.
    Huang YB; Hu CR; Zhang L; Yin W; Hu B
    PLoS One; 2015; 10(10):e0140752. PubMed ID: 26485435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perisomatic-targeting granule cells in the mouse olfactory bulb.
    Naritsuka H; Sakai K; Hashikawa T; Mori K; Yamaguchi M
    J Comp Neurol; 2009 Aug; 515(4):409-26. PubMed ID: 19459218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress and trauma: BDNF control of dendritic-spine formation and regression.
    Bennett MR; Lagopoulos J
    Prog Neurobiol; 2014 Jan; 112():80-99. PubMed ID: 24211850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of spine maturation and pruning through proBDNF synthesized and released in dendrites.
    Orefice LL; Shih CC; Xu H; Waterhouse EG; Xu B
    Mol Cell Neurosci; 2016 Mar; 71():66-79. PubMed ID: 26705735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local information processing in dendritic trees: subsets of spines in granule cells of the mammalian olfactory bulb.
    Woolf TB; Shepherd GM; Greer CA
    J Neurosci; 1991 Jun; 11(6):1837-54. PubMed ID: 2045889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serial reconstructions of granule cell spines in the mammalian olfactory bulb.
    Woolf TB; Shepherd GM; Greer CA
    Synapse; 1991 Mar; 7(3):181-92. PubMed ID: 1882328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB.
    Imamura F; Greer CA
    PLoS One; 2009 Aug; 4(8):e6729. PubMed ID: 19707543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.