These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 26211572)
1. Electroadsorption-assisted direct determination of trace arsenic without interference using transmission X-ray fluorescence spectroscopy. Jiang TJ; Guo Z; Liu JH; Huang XJ Anal Chem; 2015 Aug; 87(16):8503-9. PubMed ID: 26211572 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical X-ray fluorescence spectroscopy for trace heavy metal analysis: enhancing X-ray fluorescence detection capabilities by four orders of magnitude. Hutton LA; O'Neil GD; Read TL; Ayres ZJ; Newton ME; Macpherson JV Anal Chem; 2014 May; 86(9):4566-72. PubMed ID: 24701959 [TBL] [Abstract][Full Text] [Related]
3. On-site quantitation of arsenic in drinking water by disk solid-phase extraction/mobile X-ray fluorescence spectrometry. Hagiwara K; Koike Y; Aizawa M; Nakamura T Talanta; 2015 Nov; 144():788-92. PubMed ID: 26452891 [TBL] [Abstract][Full Text] [Related]
4. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions. Parsons C; Margui Grabulosa E; Pili E; Floor GH; Roman-Ross G; Charlet L J Hazard Mater; 2013 Nov; 262():1213-22. PubMed ID: 22819961 [TBL] [Abstract][Full Text] [Related]
5. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661 [TBL] [Abstract][Full Text] [Related]
6. Direct identification and analysis of heavy metals in solution (Hg, Cu, Pb, Zn, Ni) by use of in situ electrochemical X-ray fluorescence. O'Neil GD; Newton ME; Macpherson JV Anal Chem; 2015; 87(9):4933-40. PubMed ID: 25860820 [TBL] [Abstract][Full Text] [Related]
7. Method development for the determination of arsenic by sequential injection/anodic stripping voltammetry using long-lasting gold-modified screen-printed carbon electrode. Punrat E; Chuanuwatanakul S; Kaneta T; Motomizu S; Chailapakul O Talanta; 2013 Nov; 116():1018-25. PubMed ID: 24148510 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical detection of arsenic(III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold. Gao C; Yu XY; Xiong SQ; Liu JH; Huang XJ Anal Chem; 2013 Mar; 85(5):2673-80. PubMed ID: 23374085 [TBL] [Abstract][Full Text] [Related]
9. On-site Determination of Arsenic, Selenium, and Chromium(VI) in Drinking Water Using a Solid-phase Extraction Disk/Handheld X-ray Fluorescence Spectrometer. Hagiwara K; Koike Y; Aizawa M; Nakamura T Anal Sci; 2018 Nov; 34(11):1309-1315. PubMed ID: 30078815 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of a novel portable x-ray fluorescence screening tool for detection of arsenic exposure. McIver DJ; VanLeeuwen JA; Knafla AL; Campbell JA; Alexander KM; Gherase MR; Guernsey JR; Fleming DE Physiol Meas; 2015 Dec; 36(12):2443-59. PubMed ID: 26536141 [TBL] [Abstract][Full Text] [Related]
11. Novel use of field-portable-XRF for the direct analysis of trace elements in marine macroalgae. Bull A; Brown MT; Turner A Environ Pollut; 2017 Jan; 220(Pt A):228-233. PubMed ID: 27692887 [TBL] [Abstract][Full Text] [Related]
12. Feasibility of measuring arsenic and selenium in human skin using in vivo x-ray fluorescence (XRF)--a comparison of methods. Shehab H; Desouza ED; O'Meara J; Pejović-Milić A; Chettle DR; Fleming DE; McNeill FE Physiol Meas; 2016 Jan; 37(1):145-61. PubMed ID: 26683849 [TBL] [Abstract][Full Text] [Related]
13. Use of handheld X-ray fluorescence spectrometry units for identification of arsenic in treated wood. Block CN; Shibata T; Solo-Gabriele HM; Townsend TG Environ Pollut; 2007 Jul; 148(2):627-33. PubMed ID: 17241725 [TBL] [Abstract][Full Text] [Related]
14. Interference-free determination of ischemia-modified albumin using quantum dot coupled X-ray fluorescence spectroscopy. Luo Y; Wang C; Jiang T; Zhang B; Huang J; Liao P; Fu W Biosens Bioelectron; 2014 Jan; 51():136-42. PubMed ID: 23948244 [TBL] [Abstract][Full Text] [Related]
15. Rapid limit tests for metal impurities in pharmaceutical materials by X-ray fluorescence spectroscopy using wavelet transform filtering. Arzhantsev S; Li X; Kauffman JF Anal Chem; 2011 Feb; 83(3):1061-8. PubMed ID: 21222440 [TBL] [Abstract][Full Text] [Related]
16. A calibration method for proposed XRF measurements of arsenic and selenium in nail clippings. Gherase MR; Fleming DE Phys Med Biol; 2011 Oct; 56(20):N215-25. PubMed ID: 21937772 [TBL] [Abstract][Full Text] [Related]
17. Optimizing detector geometry for trace element mapping by X-ray fluorescence. Sun Y; Gleber SC; Jacobsen C; Kirz J; Vogt S Ultramicroscopy; 2015 May; 152():44-56. PubMed ID: 25600825 [TBL] [Abstract][Full Text] [Related]
18. Analysis of arsenic pollution in groundwater aquifers by X-ray fluorescence. Sbarato VM; Sánchez HJ Appl Radiat Isot; 2001 May; 54(5):737-40. PubMed ID: 11258520 [TBL] [Abstract][Full Text] [Related]
19. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF. Chen Z; Williams PN; Zhang H Environ Sci Process Impacts; 2013 Sep; 15(9):1768-74. PubMed ID: 23912422 [TBL] [Abstract][Full Text] [Related]
20. [SR-XRF analysis of characteristics of heavy element concentration in qingdao algae and application to monitoring oceanic pollution]. Kang SX; Shen XS; Huang YY; Ju X; Wu ZQ Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Feb; 23(1):94-7. PubMed ID: 12939980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]