These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 26211572)
21. Assessing arsenic in human toenail clippings using portable X-ray fluorescence. Fleming DEB; Crook SL; Evans CT; Nader MN; Atia M; Hicks JMT; Sweeney E; McFarlane CR; Kim JS; Keltie E; Adisesh A Appl Radiat Isot; 2021 Jan; 167():109491. PubMed ID: 33121893 [TBL] [Abstract][Full Text] [Related]
22. Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper. Jena BK; Raj CR Anal Chem; 2008 Jul; 80(13):4836-44. PubMed ID: 18444693 [TBL] [Abstract][Full Text] [Related]
23. Speciation of inorganic arsenic in drinking water by wavelength-dispersive X-ray fluorescence spectrometry after in situ preconcentration with miniature solid-phase extraction disks. Hagiwara K; Inui T; Koike Y; Aizawa M; Nakamura T Talanta; 2015 Mar; 134():739-744. PubMed ID: 25618730 [TBL] [Abstract][Full Text] [Related]
24. Review: the approaches for estimation of limit of detection for ICP-MS trace analysis of arsenic. Rajaković LV; Marković DD; Rajaković-Ognjanović VN; Antanasijević DZ Talanta; 2012 Dec; 102():79-87. PubMed ID: 23182578 [TBL] [Abstract][Full Text] [Related]
25. Simultaneous detection of As and Se in polyester resin skin phantoms. Gherase MR; Vallee ME; Fleming DE Appl Radiat Isot; 2010; 68(4-5):743-5. PubMed ID: 19819714 [TBL] [Abstract][Full Text] [Related]
26. Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles. Li J; Chen L; Lou T; Wang Y ACS Appl Mater Interfaces; 2011 Oct; 3(10):3936-41. PubMed ID: 21916441 [TBL] [Abstract][Full Text] [Related]
27. K-shell X-ray fluorescence measurements of arsenic depth-dependent concentration in polyester resin discs using the fundamental parameter method. Gherase MR; Fleming DE Appl Radiat Isot; 2009 Jan; 67(1):50-4. PubMed ID: 18703343 [TBL] [Abstract][Full Text] [Related]
28. Functionalized gold nanoparticles for the detection of arsenic in water. Domínguez-González R; González Varela L; Bermejo-Barrera P Talanta; 2014 Jan; 118():262-9. PubMed ID: 24274297 [TBL] [Abstract][Full Text] [Related]
29. [Determination of acid-resistant silicic particles in lung by micro-XRF and its application in diagnosis of drowning]. Hu SL; Wen JF; Lai WB; Fang C; Zhang XT; Wang SC; Dai WL; Liu C Fa Yi Xue Za Zhi; 2010 Aug; 26(4):257-9. PubMed ID: 20967950 [TBL] [Abstract][Full Text] [Related]
30. Gold-nanoparticle-embedded nafion composite modified on glassy carbon electrode for highly selective detection of arsenic(III). Huang JF; Chen HH Talanta; 2013 Nov; 116():852-9. PubMed ID: 24148484 [TBL] [Abstract][Full Text] [Related]
31. Determination of trace metals in drinking water using solid-phase extraction disks and X-ray fluorescence spectrometry. Hou X; Peters HL; Yang Z; Wagner KA; Batchelor JD; Daniel MM; Jones BT Appl Spectrosc; 2003 Mar; 57(3):338-42. PubMed ID: 14658627 [TBL] [Abstract][Full Text] [Related]
32. Eggshell membrane-based solid-phase extraction combined with hydride generation atomic fluorescence spectrometry for trace arsenic(V) in environmental water samples. Zhang Y; Wang W; Li L; Huang Y; Cao J Talanta; 2010 Mar; 80(5):1907-12. PubMed ID: 20152431 [TBL] [Abstract][Full Text] [Related]
33. Modeling of Chromium, Copper, Zinc, Arsenic and Lead Using Portable X-ray Fluorescence Spectrometer Based on Discrete Wavelet Transform. Li F; Lu A; Wang J Int J Environ Res Public Health; 2017 Sep; 14(10):. PubMed ID: 28974007 [TBL] [Abstract][Full Text] [Related]
34. Facilitating inorganic arsenic speciation and quantification in waters: Polymer inclusion membrane preconcentration and X-ray fluorescence detection. Chillè D; Marguí E; Anticó E; Foti C; Fontàs C Anal Chim Acta; 2024 Oct; 1324():343098. PubMed ID: 39218578 [TBL] [Abstract][Full Text] [Related]
35. Total inorganic arsenic detection in real water samples using anodic stripping voltammetry and a gold-coated diamond thin-film electrode. Song Y; Swain GM Anal Chim Acta; 2007 Jun; 593(1):7-12. PubMed ID: 17531818 [TBL] [Abstract][Full Text] [Related]
36. Use of a field portable X-Ray fluorescence analyzer to determine the concentration of lead and other metals in soil samples. Clark S; Menrath W; Chen M; Roda S; Succop P Ann Agric Environ Med; 1999; 6(1):27-32. PubMed ID: 10384212 [TBL] [Abstract][Full Text] [Related]
37. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China. Ran J; Wang D; Wang C; Zhang G; Yao L Environ Sci Process Impacts; 2014 Aug; 16(8):1870-7. PubMed ID: 24875935 [TBL] [Abstract][Full Text] [Related]
38. Localization and speciation of arsenic and trace elements in rice tissues. Smith E; Kempson I; Juhasz AL; Weber J; Skinner WM; Gräfe M Chemosphere; 2009 Jul; 76(4):529-35. PubMed ID: 19345396 [TBL] [Abstract][Full Text] [Related]
39. Portable XRF analysis of occupational air filter samples from different workplaces using different samplers: final results, summary and conclusions. Harper M; Pacolay B; Hintz P; Bartley DL; Slaven JE; Andrew ME J Environ Monit; 2007 Nov; 9(11):1263-70. PubMed ID: 17968454 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of a portable X-ray fluorescence instrument for the determination of lead in workplace air samples. Morley JC; Clark CS; Deddens JA; Ashley K; Roda S Appl Occup Environ Hyg; 1999 May; 14(5):306-16. PubMed ID: 10446483 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]