BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26211680)

  • 21. Phosphodiesterase-4 (PDE4) molecular pharmacology and Alzheimer's disease.
    Gurney ME; D'Amato EC; Burgin AB
    Neurotherapeutics; 2015 Jan; 12(1):49-56. PubMed ID: 25371167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Memory-enhancing effects of GEBR-32a, a new PDE4D inhibitor holding promise for the treatment of Alzheimer's disease.
    Ricciarelli R; Brullo C; Prickaerts J; Arancio O; Villa C; Rebosio C; Calcagno E; Balbi M; van Hagen BT; Argyrousi EK; Zhang H; Pronzato MA; Bruno O; Fedele E
    Sci Rep; 2017 Apr; 7():46320. PubMed ID: 28402318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown.
    Houslay MD
    Trends Biochem Sci; 2010 Feb; 35(2):91-100. PubMed ID: 19864144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective up-regulation of phosphodiesterase-4 cyclic adenosine 3',5'-monophosphate (cAMP)-specific phosphodiesterase variants by elevated cAMP content in human myometrial cells in culture.
    Méhats C; Tanguy G; Dallot E; Robert B; Rebourcet R; Ferré F; Leroy MJ
    Endocrinology; 1999 Jul; 140(7):3228-37. PubMed ID: 10385419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PET measurements of cAMP-mediated phosphodiesterase-4 with (R)-[11C]rolipram.
    Kenk M; Thomas A; Lortie M; Dekemp R; Beanlands RS; Dasilva JN
    Curr Radiopharm; 2011 Jan; 4(1):44-58. PubMed ID: 22191614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA interference-mediated knockdown of long-form phosphodiesterase-4D (PDE4D) enzyme reverses amyloid-β42-induced memory deficits in mice.
    Zhang C; Cheng Y; Wang H; Wang C; Wilson SP; Xu J; Zhang HT
    J Alzheimers Dis; 2014; 38(2):269-80. PubMed ID: 23948935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclic adenosine monophosphate (cAMP)-specific phosphodiesterase is functional in bovine mammary gland.
    Dostaler-Touchette V; Bédard F; Guillemette C; Pothier F; Chouinard PY; Richard FJ
    J Dairy Sci; 2009 Aug; 92(8):3757-65. PubMed ID: 19620657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insight into Inhibitory Mechanism of PDE4D by Dietary Polyphenols Using Molecular Dynamics Simulations and Free Energy Calculations.
    Furlan V; Bren U
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33806914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein-protein interactions of PDE4 family members - Functions, interactions and therapeutic value.
    Klussmann E
    Cell Signal; 2016 Jul; 28(7):713-8. PubMed ID: 26498857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphodiesterase-4 inhibition as a therapeutic strategy for metabolic disorders.
    Wu C; Rajagopalan S
    Obes Rev; 2016 May; 17(5):429-41. PubMed ID: 26997580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design, synthesis, biological evaluation and structural characterization of novel GEBR library PDE4D inhibitors.
    Brullo C; Rapetti F; Abbate S; Prosdocimi T; Torretta A; Semrau M; Massa M; Alfei S; Storici P; Parisini E; Bruno O
    Eur J Med Chem; 2021 Nov; 223():113638. PubMed ID: 34171658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PDE4 inhibitors for disease therapy: advances and future perspective.
    Du B; Luo M; Ren C; Zhang J
    Future Med Chem; 2023 Jul; 15(13):1185-1207. PubMed ID: 37470147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of signaling through GPCR-cAMP-PKA pathways by PDE4 depends on stimulus intensity: Possible implications for the pathogenesis of acrodysostosis without hormone resistance.
    Motte E; Le Stunff C; Briet C; Dumaz N; Silve C
    Mol Cell Endocrinol; 2017 Feb; 442():1-11. PubMed ID: 27908835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive phenotypic modulation of human arterial endothelial cells to fluid shear stress-encoded signals: modulation by phosphodiesterase 4D-VE-cadherin signalling.
    Rampersad SN; Wudwud A; Hubert F; Maurice DH
    Cell Signal; 2016 Jul; 28(7):741-8. PubMed ID: 26658094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Salt-Inducible Kinase 1 Terminates cAMP Signaling by an Evolutionarily Conserved Negative-Feedback Loop in β-Cells.
    Kim MJ; Park SK; Lee JH; Jung CY; Sung DJ; Park JH; Yoon YS; Park J; Park KG; Song DK; Cho H; Kim ST; Koo SH
    Diabetes; 2015 Sep; 64(9):3189-202. PubMed ID: 25918234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpression of phosphodiesterase-4 subtypes involved in surgery-induced neuroinflammation and cognitive dysfunction in mice.
    Wang W; Zhang XY; Feng ZG; Wang DX; Zhang H; Sui B; Zhang YY; Zhao WX; Fu Q; Xu ZP; Mi WD
    Brain Res Bull; 2017 Apr; 130():274-282. PubMed ID: 28235598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of cyclic AMP in rat pulmonary microvascular endothelial cells by rolipram-sensitive cyclic AMP phosphodiesterase (PDE4).
    Thompson WJ; Ashikaga T; Kelly JJ; Liu L; Zhu B; Vemavarapu L; Strada SJ
    Biochem Pharmacol; 2002 Feb; 63(4):797-807. PubMed ID: 11992650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dysregulation of hepatic cAMP levels via altered Pde4b expression plays a critical role in alcohol-induced steatosis.
    Avila DV; Barker DF; Zhang J; McClain CJ; Barve S; Gobejishvili L
    J Pathol; 2016 Sep; 240(1):96-107. PubMed ID: 27287961
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphodiesterase 4B: Master Regulator of Brain Signaling.
    Tibbo AJ; Baillie GS
    Cells; 2020 May; 9(5):. PubMed ID: 32438615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antipruritic mechanisms of topical E6005, a phosphodiesterase 4 inhibitor: inhibition of responses to proteinase-activated receptor 2 stimulation mediated by increase in intracellular cyclic AMP.
    Andoh T; Kuraishi Y
    J Dermatol Sci; 2014 Dec; 76(3):206-13. PubMed ID: 25458869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.