BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26211755)

  • 1. Computer-aided design of T-cell epitope-based vaccines: addressing population coverage.
    Oyarzun P; Kobe B
    Int J Immunogenet; 2015 Oct; 42(5):313-21. PubMed ID: 26211755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD4+ T cell epitope discovery and rational vaccine design.
    Rosa DS; Ribeiro SP; Cunha-Neto E
    Arch Immunol Ther Exp (Warsz); 2010 Apr; 58(2):121-30. PubMed ID: 20155490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity.
    OyarzĂșn P; Ellis JJ; BodĂ©n M; Kobe B
    BMC Bioinformatics; 2013 Feb; 14():52. PubMed ID: 23409948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting population coverage of T-cell epitope-based diagnostics and vaccines.
    Bui HH; Sidney J; Dinh K; Southwood S; Newman MJ; Sette A
    BMC Bioinformatics; 2006 Mar; 7():153. PubMed ID: 16545123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bioinformatics tool for epitope-based vaccine design that accounts for human ethnic diversity: application to emerging infectious diseases.
    Oyarzun P; Ellis JJ; Gonzalez-Galarza FF; Jones AR; Middleton D; Boden M; Kobe B
    Vaccine; 2015 Mar; 33(10):1267-73. PubMed ID: 25629524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of peptide selection approaches for epitope-based vaccine design.
    Schubert B; Lund O; Nielsen M
    Tissue Antigens; 2013 Oct; 82(4):243-51. PubMed ID: 24461003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epitope prediction and identification- adaptive T cell responses in humans.
    Sidney J; Peters B; Sette A
    Semin Immunol; 2020 Aug; 50():101418. PubMed ID: 33131981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Major histocompatibility complex linked databases and prediction tools for designing vaccines.
    Singh SP; Mishra BN
    Hum Immunol; 2016 Mar; 77(3):295-306. PubMed ID: 26585361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced multiepitope-based vaccines elicit CD8+ cytotoxic T cells against both immunodominant and cryptic epitopes.
    Tine JA; Firat H; Payne A; Russo G; Davis SW; Tartaglia J; Lemonnier FA; Demoyen PL; Moingeon P
    Vaccine; 2005 Jan; 23(8):1085-91. PubMed ID: 15620483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide vaccines incorporating a 'promiscuous' T-cell epitope bypass certain haplotype restricted immune responses and provide broad spectrum immunogenicity.
    Kaumaya PT; Kobs-Conrad S; Seo YH; Lee H; VanBuskirk AM; Feng N; Sheridan JF; Stevens V
    J Mol Recognit; 1993 Jun; 6(2):81-94. PubMed ID: 7508238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico analysis of MHC-I restricted epitopes of Chikungunya virus proteins: Implication in understanding anti-CHIKV CD8(+) T cell response and advancement of epitope based immunotherapy for CHIKV infection.
    Pratheek BM; Suryawanshi AR; Chattopadhyay S; Chattopadhyay S
    Infect Genet Evol; 2015 Apr; 31():118-26. PubMed ID: 25643869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards in silico design of epitope-based vaccines.
    Toussaint NC; Kohlbacher O
    Expert Opin Drug Discov; 2009 Oct; 4(10):1047-60. PubMed ID: 23480396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools.
    De Groot AS; Moise L; Terry F; Gutierrez AH; Hindocha P; Richard G; Hoft DF; Ross TM; Noe AR; Takahashi Y; Kotraiah V; Silk SE; Nielsen CM; Minassian AM; Ashfield R; Ardito M; Draper SJ; Martin WD
    Front Immunol; 2020; 11():442. PubMed ID: 32318055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoinformatic Identification of Potential Epitopes.
    Desai P; Tarwadi D; Pandya B; Yagnik B
    Methods Mol Biol; 2020; 2131():265-275. PubMed ID: 32162260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico CD4+ T-cell epitope prediction and HLA distribution analysis for the potential proteins of Neisseria meningitidis Serogroup B--a clue for vaccine development.
    Gupta SK; Smita S; Sarangi AN; Srivastava M; Akhoon BA; Rahman Q; Gupta SK
    Vaccine; 2010 Oct; 28(43):7092-7. PubMed ID: 20716448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Prediction of the Landscape of T Cell Epitope Immunogenicity in Sequence Space.
    Ogishi M; Yotsuyanagi H
    Front Immunol; 2019; 10():827. PubMed ID: 31057550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New tools, new approaches and new ideas for vaccine development.
    De Groot AS; Moise L
    Expert Rev Vaccines; 2007 Apr; 6(2):125-7. PubMed ID: 17408360
    [No Abstract]   [Full Text] [Related]  

  • 18. Proteome-wide B and T cell epitope repertoires in outer membrane proteins of Mycobacterium avium subsp. paratuberculosis have vaccine and diagnostic relevance: a holistic approach.
    Rana A; Rub A; Akhter Y
    J Mol Recognit; 2015 Aug; 28(8):506-20. PubMed ID: 25727233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteins accessible to immune surveillance show significant T-cell epitope depletion: Implications for vaccine design.
    Halling-Brown M; Shaban R; Frampton D; Sansom CE; Davies M; Flower D; Duffield M; Titball RW; Brusic V; Moss DS
    Mol Immunol; 2009 Aug; 46(13):2699-705. PubMed ID: 19560824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T cell epitope identification for bovine vaccines: an epitope mapping method for BoLA A-11.
    De Groot AS; Nene V; Hegde NR; Srikumaran S; Rayner J; Martin W
    Int J Parasitol; 2003 May; 33(5-6):641-53. PubMed ID: 12782061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.