These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 26211837)

  • 21. Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels.
    Uba FI; Pullagurla SR; Sirasunthorn N; Wu J; Park S; Chantiwas R; Cho YK; Shin H; Soper SA
    Analyst; 2015 Jan; 140(1):113-26. PubMed ID: 25369728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analytical expressions for pH-regulated electroosmotic flow in microchannels.
    Hsu JP; Huang CH
    Colloids Surf B Biointerfaces; 2012 May; 93():260-2. PubMed ID: 22236502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatiotemporally Defining Biomolecule Preconcentration by Merging Ion Concentration Polarization.
    Kwak R; Kang JY; Kim TS
    Anal Chem; 2016 Jan; 88(1):988-96. PubMed ID: 26642086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control.
    Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Liquid glass electrodes for nanofluidics.
    Lee S; An R; Hunt AJ
    Nat Nanotechnol; 2010 Jun; 5(6):412-6. PubMed ID: 20473300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of microchannel geometry on preconcentration intensity in microfluidic chips with straight or convergent-divergent microchannels.
    Chen CL; Yang RJ
    Electrophoresis; 2012 Mar; 33(5):751-7. PubMed ID: 22522531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupled concentration polarization and electroosmotic circulation near micro/nanointerfaces: Taylor-Aris model of hydrodynamic dispersion and limits of its applicability.
    Yaroshchuk A; Zholkovskiy E; Pogodin S; Baulin V
    Langmuir; 2011 Sep; 27(18):11710-21. PubMed ID: 21812464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capillary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip.
    Liu V; Song YA; Han J
    Lab Chip; 2010 Jun; 10(11):1485-90. PubMed ID: 20480116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.
    Hoettges KF; McDonnell MB; Hughes MP
    Electrophoresis; 2014 Feb; 35(4):467-73. PubMed ID: 24166772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoelectrokinetic bufferchannel-less radial preconcentrator and online extractor by tunable ion depletion layer.
    Lee S; Park S; Kim W; Moon S; Kim HY; Lee H; Kim SJ
    Biomicrofluidics; 2019 May; 13(3):034113. PubMed ID: 31186822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crack-Photolithography for Membrane-Free Diffusion-Based Micro/Nanofluidic Devices.
    Kim M; Kim T
    Anal Chem; 2015 Nov; 87(22):11215-23. PubMed ID: 26140611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics.
    Hua Y; Jemere AB; Dragoljic J; Harrison DJ
    Lab Chip; 2013 Jul; 13(13):2651-9. PubMed ID: 23712291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid prototyping of microfluidic devices with integrated wrinkled gold micro-/nano textured electrodes for electrochemical analysis.
    Gabardo CM; Adams-McGavin RC; Vanderfleet OM; Soleymani L
    Analyst; 2015 Aug; 140(16):5781-8. PubMed ID: 26178719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pressure-assisted selective preconcentration in a straight nanochannel.
    Louër AC; Plecis A; Pallandre A; Galas JC; Estevez-Torres A; Haghiri-Gosnet AM
    Anal Chem; 2013 Aug; 85(16):7948-56. PubMed ID: 23875641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Faradaic Ion Concentration Polarization on a Paper Fluidic Platform.
    Li X; Luo L; Crooks RM
    Anal Chem; 2017 Apr; 89(7):4294-4300. PubMed ID: 28303715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sacrificial layer microfluidic device fabrication methods.
    Peeni BA; Lee ML; Hawkins AR; Woolley AT
    Electrophoresis; 2006 Dec; 27(24):4888-95. PubMed ID: 17117379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wetting micro- and nanofluidic devices using supercritical water.
    Riehn R; Austin RH
    Anal Chem; 2006 Aug; 78(16):5933-4. PubMed ID: 16906743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-vortical flow inducing electrokinetic instability in ion concentration polarization layer.
    Kim SJ; Ko SH; Kwak R; Posner JD; Kang KH; Han J
    Nanoscale; 2012 Dec; 4(23):7406-10. PubMed ID: 23085964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrokinetic identification of ribonucleotide monophosphates (rNMPs) using thermoplastic nanochannels.
    Amarasekara CA; Rathnayaka C; Athapattu US; Zhang L; Choi J; Park S; Nagel AC; Soper SA
    J Chromatogr A; 2021 Feb; 1638():461892. PubMed ID: 33477027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sample preconcentration from dilute solutions on micro/nanofluidic platforms: A review.
    Fu LM; Hou HH; Chiu PH; Yang RJ
    Electrophoresis; 2018 Jan; 39(2):289-310. PubMed ID: 28960423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.