These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26212385)

  • 1. Hydrodynamic instability in a magnetically driven suspension of paramagnetic red blood cells.
    Kashevsky BE; Zholud AM; Kashevsky SB
    Soft Matter; 2015 Sep; 11(33):6547-51. PubMed ID: 26212385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractionation of Magnetic Microspheres in a Microfluidic Spiral: Interplay between Magnetic and Hydrodynamic Forces.
    Dutz S; Hayden ME; Häfeli UO
    PLoS One; 2017; 12(1):e0169919. PubMed ID: 28107472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High gradient magnetic field microstructures for magnetophoretic cell separation.
    Abdel Fattah AR; Ghosh S; Puri IK
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Aug; 1027():194-9. PubMed ID: 27294532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Six-stage cascade paramagnetic mode magnetophoretic separation system for human blood samples.
    Jung Y; Choi Y; Han KH; Frazier AB
    Biomed Microdevices; 2010 Aug; 12(4):637-45. PubMed ID: 20349341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic capturing-dynamics of paramagnetic bead suspensions.
    Mikkelsen C; Bruus H
    Lab Chip; 2005 Nov; 5(11):1293-7. PubMed ID: 16234954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of simulation/finite element analysis to the separation of intrinsically magnetic spores and red blood cells using a microfluidic magnetic deposition system.
    Sun J; Moore L; Xue W; Kim J; Zborowski M; Chalmers JJ
    Biotechnol Bioeng; 2018 May; 115(5):1288-1300. PubMed ID: 29337367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of erythrocyte in a model vessel exposed to inhomogeneous magnetic fields.
    Okazaki M; Kon K; Maeda N; Shiga T
    Physiol Chem Phys Med NMR; 1988; 20(1):3-14. PubMed ID: 3406138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High gradient magnetic separation of erythrocytes.
    Owen CS
    Biophys J; 1978 May; 22(2):171-8. PubMed ID: 656540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational analysis of enhanced magnetic bioseparation in microfluidic systems with flow-invasive magnetic elements.
    Khashan SA; Alazzam A; Furlani EP
    Sci Rep; 2014 Jun; 4():5299. PubMed ID: 24931437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional flow magnetophoresis of microparticles.
    Kawano M; Watarai H
    Anal Bioanal Chem; 2012 Jul; 403(9):2645-53. PubMed ID: 22618326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling.
    Qu BY; Wu ZY; Fang F; Bai ZM; Yang DZ; Xu SK
    Anal Bioanal Chem; 2008 Dec; 392(7-8):1317-24. PubMed ID: 18807015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations.
    Han KH; Frazier AB
    Lab Chip; 2006 Feb; 6(2):265-73. PubMed ID: 16450037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of magnetic susceptibility of various ion-labeled red blood cells by means of analytical magnetapheresis.
    Bor Fuh C; Su YS; Tsai HY
    J Chromatogr A; 2004 Feb; 1027(1-2):289-96. PubMed ID: 14971514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic suppression of phase separation in active suspensions.
    Matas-Navarro R; Golestanian R; Liverpool TB; Fielding SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032304. PubMed ID: 25314443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility study of red blood cell debulking by magnetic field-flow fractionation with step-programmed flow.
    Moore LR; Williams PS; Nehl F; Abe K; Chalmers JJ; Zborowski M
    Anal Bioanal Chem; 2014 Feb; 406(6):1661-70. PubMed ID: 24141316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood Crystal: Emergent Order of Red Blood Cells Under Wall-Confined Shear Flow.
    Shen Z; Fischer TM; Farutin A; Vlahovska PM; Harting J; Misbah C
    Phys Rev Lett; 2018 Jun; 120(26):268102. PubMed ID: 30004752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuum modeling of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions.
    Ley MW; Bruus H
    Lab Chip; 2016 Apr; 16(7):1178-88. PubMed ID: 26948344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breakdown of deterministic lateral displacement efficiency for non-dilute suspensions: A numerical study.
    Vernekar R; Krüger T
    Med Eng Phys; 2015 Sep; 37(9):845-54. PubMed ID: 26143149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red blood cell (RBC) suspensions in confined microflows: Pressure-flow relationship.
    Stauber H; Waisman D; Korin N; Sznitman J
    Med Eng Phys; 2017 Oct; 48():49-54. PubMed ID: 28838798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent nonlinear weak-field magnetic behavior of maghemite nanoparticles.
    de Montferrand C; Lalatonne Y; Bonnin D; Lièvre N; Lecouvey M; Monod P; Russier V; Motte L
    Small; 2012 Jun; 8(12):1945-56. PubMed ID: 22488765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.