BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 26212454)

  • 1. Structural Mechanisms of Nucleosome Recognition by Linker Histones.
    Zhou BR; Jiang J; Feng H; Ghirlando R; Xiao TS; Bai Y
    Mol Cell; 2015 Aug; 59(4):628-38. PubMed ID: 26212454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Small Number of Residues Can Determine if Linker Histones Are Bound On or Off Dyad in the Chromatosome.
    Zhou BR; Feng H; Ghirlando R; Li S; Schwieters CD; Bai Y
    J Mol Biol; 2016 Oct; 428(20):3948-3959. PubMed ID: 27558112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into the histone H1-nucleosome complex.
    Zhou BR; Feng H; Kato H; Dai L; Yang Y; Zhou Y; Bai Y
    Proc Natl Acad Sci U S A; 2013 Nov; 110(48):19390-5. PubMed ID: 24218562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo.
    Brown DT; Izard T; Misteli T
    Nat Struct Mol Biol; 2006 Mar; 13(3):250-5. PubMed ID: 16462749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex of linker histone H5 with the nucleosome and its implications for chromatin packing.
    Fan L; Roberts VA
    Proc Natl Acad Sci U S A; 2006 May; 103(22):8384-9. PubMed ID: 16717183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H1-nucleosome interactions and their functional implications.
    Bednar J; Hamiche A; Dimitrov S
    Biochim Biophys Acta; 2016 Mar; 1859(3):436-43. PubMed ID: 26477489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two DNA-binding sites on the globular domain of histone H5 are required for binding to both bulk and 5 S reconstituted nucleosomes.
    Duggan MM; Thomas JO
    J Mol Biol; 2000 Nov; 304(1):21-33. PubMed ID: 11071807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric linker histone association directs the asymmetric rearrangement of core histone interactions in a positioned nucleosome containing a thyroid hormone response element.
    Guschin D; Chandler S; Wolffe AP
    Biochemistry; 1998 Jun; 37(24):8629-36. PubMed ID: 9628724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Position and orientation of the globular domain of linker histone H5 on the nucleosome.
    Zhou YB; Gerchman SE; Ramakrishnan V; Travers A; Muyldermans S
    Nature; 1998 Sep; 395(6700):402-5. PubMed ID: 9759733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contacts of the globular domain of histone H5 and core histones with DNA in a "chromatosome".
    Hayes JJ; Pruss D; Wolffe AP
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7817-21. PubMed ID: 8052665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating the influence of linker histone variants on chromatosome dynamics and energetics.
    Woods DC; Wereszczynski J
    Nucleic Acids Res; 2020 Apr; 48(7):3591-3604. PubMed ID: 32128577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linker histones: novel insights into structure-specific recognition of the nucleosome.
    Cutter AR; Hayes JJ
    Biochem Cell Biol; 2017 Apr; 95(2):171-178. PubMed ID: 28177778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome.
    Syed SH; Goutte-Gattat D; Becker N; Meyer S; Shukla MS; Hayes JJ; Everaers R; Angelov D; Bednar J; Dimitrov S
    Proc Natl Acad Sci U S A; 2010 May; 107(21):9620-5. PubMed ID: 20457934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the structure and dynamics of the complex of the nucleosome and the linker histone.
    Pachov GV; Gabdoulline RR; Wade RC
    Nucleic Acids Res; 2011 Jul; 39(12):5255-63. PubMed ID: 21355036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational selection and dynamic adaptation upon linker histone binding to the nucleosome.
    Öztürk MA; Pachov GV; Wade RC; Cojocaru V
    Nucleic Acids Res; 2016 Aug; 44(14):6599-613. PubMed ID: 27270081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
    Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ
    Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of linker histone H1, MeCP2, and HMGD1 on nucleosome stability and target site accessibility.
    Riedmann C; Fondufe-Mittendorf YN
    Sci Rep; 2016 Sep; 6():33186. PubMed ID: 27624769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
    Woods DC; Rodríguez-Ropero F; Wereszczynski J
    J Mol Biol; 2021 May; 433(10):166902. PubMed ID: 33667509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of linker histones to the core nucleosome.
    Ali Z; Singh N
    J Biol Chem; 1987 Sep; 262(27):12989-93. PubMed ID: 3654599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.