BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26212709)

  • 1. Modulation of Presynaptic Release Probability by the Vertebrate-Specific Protein Mover.
    Körber C; Horstmann H; Venkataramani V; Herrmannsdörfer F; Kremer T; Kaiser M; Schwenger DB; Ahmed S; Dean C; Dresbach T; Kuner T
    Neuron; 2015 Aug; 87(3):521-33. PubMed ID: 26212709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of a subset of release-ready vesicles by the presynaptic protein Mover.
    Pofantis E; Neher E; Dresbach T
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33431696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The presynaptic scaffolding protein Piccolo organizes the readily releasable pool at the calyx of Held.
    Parthier D; Kuner T; Körber C
    J Physiol; 2018 Apr; 596(8):1485-1499. PubMed ID: 29194628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presynaptic release probability and readily releasable pool size are regulated by two independent mechanisms during posttetanic potentiation at the calyx of Held synapse.
    Lee JS; Kim MH; Ho WK; Lee SH
    J Neurosci; 2008 Aug; 28(32):7945-53. PubMed ID: 18685020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mover is a novel vertebrate-specific presynaptic protein with differential distribution at subsets of CNS synapses.
    Kremer T; Kempf C; Wittenmayer N; Nawrotzki R; Kuner T; Kirsch J; Dresbach T
    FEBS Lett; 2007 Oct; 581(24):4727-33. PubMed ID: 17869247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase c increases the apparent affinity of the release machinery to Ca2+ by enhancing the release machinery downstream of the Ca2+ sensor.
    Wu XS; Wu LG
    J Neurosci; 2001 Oct; 21(20):7928-36. PubMed ID: 11588166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin.
    Futai K; Kim MJ; Hashikawa T; Scheiffele P; Sheng M; Hayashi Y
    Nat Neurosci; 2007 Feb; 10(2):186-95. PubMed ID: 17237775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying presynaptic Ca2+ transient and vesicular glutamate release at a CNS nerve terminal during in vitro ischaemia.
    Lee SY; Kim JH
    J Physiol; 2015 Jul; 593(13):2793-806. PubMed ID: 25833340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic Ca2+ requirements and developmental regulation of posttetanic potentiation at the calyx of Held.
    Korogod N; Lou X; Schneggenburger R
    J Neurosci; 2005 May; 25(21):5127-37. PubMed ID: 15917453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of vesicular glutamate leakage on synaptic transmission at the calyx of Held.
    Takami C; Eguchi K; Hori T; Takahashi T
    J Physiol; 2017 Feb; 595(4):1263-1271. PubMed ID: 27801501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic loss of dynamin-related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held.
    Singh M; Denny H; Smith C; Granados J; Renden R
    J Physiol; 2018 Dec; 596(24):6263-6287. PubMed ID: 30285293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complexin stabilizes newly primed synaptic vesicles and prevents their premature fusion at the mouse calyx of held synapse.
    Chang S; Reim K; Pedersen M; Neher E; Brose N; Taschenberger H
    J Neurosci; 2015 May; 35(21):8272-90. PubMed ID: 26019341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity.
    Taschenberger H; von Gersdorff H
    J Neurosci; 2000 Dec; 20(24):9162-73. PubMed ID: 11124994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic mechanism underlying cAMP-dependent synaptic potentiation.
    Kaneko M; Takahashi T
    J Neurosci; 2004 Jun; 24(22):5202-8. PubMed ID: 15175390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological temperatures reduce the rate of vesicle pool depletion and short-term depression via an acceleration of vesicle recruitment.
    Kushmerick C; Renden R; von Gersdorff H
    J Neurosci; 2006 Feb; 26(5):1366-77. PubMed ID: 16452660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium sensitivity of glutamate release in a calyx-type terminal.
    Bollmann JH; Sakmann B; Borst JG
    Science; 2000 Aug; 289(5481):953-7. PubMed ID: 10937999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unmasking group III metabotropic glutamate autoreceptor function at excitatory synapses in the rat CNS.
    Billups B; Graham BP; Wong AY; Forsythe ID
    J Physiol; 2005 Jun; 565(Pt 3):885-96. PubMed ID: 15845577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presynaptic capacitance measurements and Ca2+ uncaging reveal submillisecond exocytosis kinetics and characterize the Ca2+ sensitivity of vesicle pool depletion at a fast CNS synapse.
    Wölfel M; Schneggenburger R
    J Neurosci; 2003 Aug; 23(18):7059-68. PubMed ID: 12904466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of presynaptic Na(+)/K(+)-ATPase reduces readily releasable pool size at the avian end-bulb of Held synapse.
    Taruno A; Ohmori H; Kuba H
    Neurosci Res; 2012 Feb; 72(2):117-28. PubMed ID: 22100365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimizing synaptic depression by control of release probability.
    Brenowitz S; Trussell LO
    J Neurosci; 2001 Mar; 21(6):1857-67. PubMed ID: 11245670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.