BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 26212982)

  • 1. Models based on ultraviolet spectroscopy, polyphenols, oligosaccharides and polysaccharides for prediction of wine astringency.
    Boulet JC; Trarieux C; Souquet JM; Ducasse MA; Caillé S; Samson A; Williams P; Doco T; Cheynier V
    Food Chem; 2016 Jan; 190():357-363. PubMed ID: 26212982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyphenolic, polysaccharide and oligosaccharide composition of Tempranillo red wines and their relationship with the perceived astringency.
    Quijada-Morín N; Williams P; Rivas-Gonzalo JC; Doco T; Escribano-Bailón MT
    Food Chem; 2014 Jul; 154():44-51. PubMed ID: 24518314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of supplementation with three commercial inactive dry yeasts on the colour, phenolic compounds, polysaccharides and astringency of a model wine solution and red wine.
    González-Royo E; Esteruelas M; Kontoudakis N; Fort F; Canals JM; Zamora F
    J Sci Food Agric; 2017 Jan; 97(1):172-181. PubMed ID: 26970323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol.
    Obreque-Slíer E; Peña-Neira A; López-Solís R
    J Agric Food Chem; 2010 Mar; 58(6):3729-35. PubMed ID: 20158256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrative salivary approach regarding palate cleansers in wine tasting.
    Taladrid D; Lorente L; Bartolomé B; Moreno-Arribas MV; Laguna L
    J Texture Stud; 2019 Feb; 50(1):75-82. PubMed ID: 30198574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the relationship between red wine colloidal fraction and astringency by asymmetrical flow field-flow fractionation coupled with multi-detection.
    Pascotto K; Leriche C; Caillé S; Violleau F; Boulet JC; Geffroy O; Levasseur-Garcia C; Cheynier V
    Food Chem; 2021 Nov; 361():130104. PubMed ID: 34087570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of condensed tannins addition on the astringency of red wines.
    Soares S; Sousa A; Mateus N; de Freitas V
    Chem Senses; 2012 Feb; 37(2):191-8. PubMed ID: 22086902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the SPI (Saliva Precipitation Index) to the evaluation of red wine astringency.
    Rinaldi A; Gambuti A; Moio L
    Food Chem; 2012 Dec; 135(4):2498-504. PubMed ID: 22980834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between astringency and phenolic composition of commercial Uruguayan Tannat wines: Application of boosted regression trees.
    Vidal L; Antúnez L; Rodríguez-Haralambides A; Giménez A; Medina K; Boido E; Ares G
    Food Res Int; 2018 Oct; 112():25-37. PubMed ID: 30131135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Commercial
    Bindon KA; Kassara S; Solomon M; Bartel C; Smith PA; Barker A; Curtin C
    Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31505886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency.
    Sun B; de Sá M; Leandro C; Caldeira I; Duarte FL; Spranger I
    J Agric Food Chem; 2013 Jan; 61(4):939-46. PubMed ID: 23294371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wine astringency: more than just tannin-protein interactions.
    González-Muñoz B; Garrido-Vargas F; Pavez C; Osorio F; Chen J; Bordeu E; O'Brien JA; Brossard N
    J Sci Food Agric; 2022 Mar; 102(5):1771-1781. PubMed ID: 34796497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arabinogalactan proteins and polysaccharides compete directly with condensed tannins for saliva proteins influencing astringency perception of Cabernet Sauvignon wines.
    Kuhlman B; Aleixandre-Tudo JL; Moore JP; du Toit W
    Food Chem; 2024 Mar; 435():137625. PubMed ID: 37801763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating wine astringency profiles by characterizing tannin fractions in Cabernet Sauvignon wines and model wines.
    Zhao Q; Du G; Zhao P; Guo A; Cao X; Cheng C; Liu H; Wang F; Zhao Y; Liu Y; Wang X
    Food Chem; 2023 Jul; 414():135673. PubMed ID: 36821921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency.
    Ma W; Waffo-Teguo P; Jourdes M; Li H; Teissedre PL
    PLoS One; 2016; 11(8):e0161095. PubMed ID: 27518822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different physicochemical interactions between varietal wines and human saliva: Correspondence with astringency.
    López-Solís R; Cortés-Araya K; Medel-Marabolí M; Obreque-Slier E
    Food Res Int; 2024 Feb; 178():113964. PubMed ID: 38309881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tannin quantification in red grapes and wine: comparison of polysaccharide- and protein-based tannin precipitation techniques and their ability to model wine astringency.
    Mercurio MD; Smith PA
    J Agric Food Chem; 2008 Jul; 56(14):5528-37. PubMed ID: 18572914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheological study of tannin and protein interactions based on model systems.
    Brossard N; Bordeu E; Ibáñez RA; Chen J; Osorio F
    J Texture Stud; 2020 Aug; 51(4):585-592. PubMed ID: 32110834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wine polysaccharides modulating astringency through the interference on interaction of flavan-3-ols and BSA in model wine.
    Lei X; Zhu Y; Wang X; Zhao P; Liu P; Zhang Q; Chen T; Yuan H; Guo Y
    Int J Biol Macromol; 2019 Oct; 139():896-903. PubMed ID: 31400416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a commercial tannin on the sensorial temporality of astringency.
    Medel-Marabolí M; Romero JL; Obreque-Slier E; Contreras A; Peña-Neira A
    Food Res Int; 2017 Dec; 102():341-347. PubMed ID: 29195957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.