BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26213028)

  • 1. Rapid detection of volatile compounds in apple wines using FT-NIR spectroscopy.
    Ye M; Gao Z; Li Z; Yuan Y; Yue T
    Food Chem; 2016 Jan; 190():701-708. PubMed ID: 26213028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR).
    Genisheva Z; Quintelas C; Mesquita DP; Ferreira EC; Oliveira JM; Amaral AL
    Food Chem; 2018 Apr; 246():172-178. PubMed ID: 29291836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near infrared spectroscopy as a rapid tool to measure volatile aroma compounds in Riesling wine: possibilities and limits.
    Smyth HE; Cozzolino D; Cynkar WU; Dambergs RG; Sefton M; Gishen M
    Anal Bioanal Chem; 2008 Apr; 390(7):1911-6. PubMed ID: 18283438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Feasibility Study on Monitoring Residual Sugar and Alcohol Strength in Kiwi Wine Fermentation Using a Fiber-Optic FT-NIR Spectrometry and PLS Regression.
    Wang B; Peng B
    J Food Sci; 2017 Feb; 82(2):358-363. PubMed ID: 28103396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of near-infrared spectroscopy for the estimation of volatile compounds in Tempranillo Blanco grape berries during ripening.
    Marín-San Román S; Fernández-Novales J; Cebrián-Tarancón C; Sánchez-Gómez R; Diago MP; Garde-Cerdán T
    J Sci Food Agric; 2023 Oct; 103(13):6317-6329. PubMed ID: 37195204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PLS-R Calibration Models for Wine Spirit Volatile Phenols Prediction by Near-Infrared Spectroscopy.
    Anjos O; Caldeira I; Fernandes TA; Pedro SI; Vitória C; Oliveira-Alves S; Catarino S; Canas S
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction.
    Xu Y; Fan W; Qian MC
    J Agric Food Chem; 2007 Apr; 55(8):3051-7. PubMed ID: 17355142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the potential utility of single-bounce attenuated total reflectance Fourier transform infrared spectroscopy in the analysis of distilled liquors and wines.
    Cocciardi RA; Ismail AA; Sedman J
    J Agric Food Chem; 2005 Apr; 53(8):2803-9. PubMed ID: 15826022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volatile composition of Merlot red wine and its contribution to the aroma: optimization and validation of analytical method.
    Arcari SG; Caliari V; Sganzerla M; Godoy HT
    Talanta; 2017 Nov; 174():752-766. PubMed ID: 28738652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of amino acids in Chinese rice wine by fourier transform near-infrared spectroscopy.
    Shen F; Niu X; Yang D; Ying Y; Li B; Zhu G; Wu J
    J Agric Food Chem; 2010 Sep; 58(17):9809-16. PubMed ID: 20707307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of polyphenolic compounds of red wines by UV-VIS-NIR spectroscopy and chemometrics tools.
    Martelo-Vidal MJ; Vázquez M
    Food Chem; 2014 Sep; 158():28-34. PubMed ID: 24731310
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Convertini R; Patz C; Kumar K; May B; Andlauer W; Schweiggert R
    Food Chem; 2022 Sep; 387():132912. PubMed ID: 35427867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of characteristic NIR variables selection in portable detection of soluble solids content of apple by near infrared spectroscopy].
    Fan SX; Huang WQ; Li JB; Guo ZM; Zhaq CJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2707-12. PubMed ID: 25739212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS.
    Ferreira L; Perestrelo R; Caldeira M; Câmara JS
    J Sep Sci; 2009 Jun; 32(11):1875-88. PubMed ID: 19425016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sampling approach for predicting the eating quality of apples using visible-near infrared spectroscopy.
    Martínez Vega MV; Sharifzadeh S; Wulfsohn D; Skov T; Clemmensen LH; Toldam-Andersen TB
    J Sci Food Agric; 2013 Dec; 93(15):3710-9. PubMed ID: 23633436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method to detect diphenylamine contamination of apple fruit and storages using headspace solid phase micro-extraction and gas chromatography/mass spectroscopy.
    Song J; Forney CF; Jordan MA
    Food Chem; 2014 Oct; 160():255-9. PubMed ID: 24799236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the volatile profile of Brazilian Merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection.
    Welke JE; Manfroi V; Zanus M; Lazarotto M; Alcaraz Zini C
    J Chromatogr A; 2012 Feb; 1226():124-39. PubMed ID: 22277184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry.
    Aprea E; Gika H; Carlin S; Theodoridis G; Vrhovsek U; Mattivi F
    J Chromatogr A; 2011 Jul; 1218(28):4517-24. PubMed ID: 21641602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature selection and recognition from nonspecific volatile profiles for discrimination of apple juices according to variety and geographical origin.
    Guo J; Yue T; Yuan Y
    J Food Sci; 2012 Oct; 77(10):C1090-6. PubMed ID: 23009695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Qualitative and quantitative prediction of volatile compounds from initial amino acid profiles in Korean rice wine (makgeolli) model.
    Kang BS; Lee JE; Park HJ
    J Food Sci; 2014 Jun; 79(6):C1106-16. PubMed ID: 24888253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.