These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 26213271)

  • 1. Detection of central fixation using short-time autoregressive spectral estimation during retinal birefringence scanning.
    Gramatikov BI
    Med Eng Phys; 2015 Sep; 37(9):905-10. PubMed ID: 26213271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting central fixation by means of artificial neural networks in a pediatric vision screener using retinal birefringence scanning.
    Gramatikov BI
    Biomed Eng Online; 2017 Apr; 16(1):52. PubMed ID: 28449714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting fixation on a target using time-frequency distributions of a retinal birefringence scanning signal.
    Gramatikov B
    Biomed Eng Online; 2013 May; 12():41. PubMed ID: 23668264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New pediatric vision screener employing polarization-modulated, retinal-birefringence-scanning-based strabismus detection and bull's eye focus detection with an improved target system: opto-mechanical design and operation.
    Irsch K; Gramatikov BI; Wu YK; Guyton DL
    J Biomed Opt; 2014 Jun; 19(6):067004. PubMed ID: 24911020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved eye-fixation detection using polarization-modulated retinal birefringence scanning, immune to corneal birefringence.
    Irsch K; Gramatikov BI; Wu YK; Guyton DL
    Opt Express; 2014 Apr; 22(7):7972-88. PubMed ID: 24718173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated detection of ocular alignment with binocular retinal birefringence scanning.
    Hunter DG; Shah AS; Sau S; Nassif D; Guyton DL
    Appl Opt; 2003 Jun; 42(16):3047-53. PubMed ID: 12790456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A no-moving-parts sensor for the detection of eye fixation using polarised light and retinal birefringence information.
    Gramatikov BI; Guyton DL
    J Med Eng Technol; 2017 May; 41(4):249-256. PubMed ID: 28122478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New pediatric vision screener, part II: electronics, software, signal processing and validation.
    Gramatikov BI; Irsch K; Wu YK; Guyton DL
    Biomed Eng Online; 2016 Feb; 15():15. PubMed ID: 26847626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modeling of retinal birefringence scanning.
    Hunter DG; Sandruck JC; Sau S; Patel SN; Guyton DL
    J Opt Soc Am A Opt Image Sci Vis; 1999 Sep; 16(9):2103-11. PubMed ID: 10474891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A device for continuous monitoring of true central fixation based on foveal birefringence.
    Gramatikov B; Irsch K; Müllenbroich M; Frindt N; Qu Y; Gutmark R; Wu YK; Guyton D
    Ann Biomed Eng; 2013 Sep; 41(9):1968-78. PubMed ID: 23645511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided fixation detection using retinal birefringence in multi-modal ophthalmic systems: Computer, electronics, algorithms.
    Gramatikov BI
    Comput Biol Med; 2020 Apr; 119():103672. PubMed ID: 32339117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection.
    Irsch K; Gramatikov B; Wu YK; Guyton D
    Biomed Opt Express; 2011 Jul; 2(7):1955-68. PubMed ID: 21750772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An eye movement technique for correlating fixational target eye movements with location on the retinal image.
    Barrett SF; Zwick H
    Biomed Sci Instrum; 2000; 36():183-8. PubMed ID: 10834230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Birefringence-based eye fixation monitor with no moving parts.
    Gramatikov BI; Zalloum OH; Wu YK; Hunter DG; Guyton DL
    J Biomed Opt; 2006; 11(3):34025. PubMed ID: 16822074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attention attraction in an ophthalmic diagnostic device using sound-modulated fixation targets.
    Gramatikov BI; Rangarajan S; Irsch K; Guyton DL
    Med Eng Phys; 2016 Aug; 38(8):818-21. PubMed ID: 27245750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The locus of fixation in strabismic amblyopia changes with increasing effort of recognition as assessed by scanning laser ophthalmoscope.
    Siepmann K; Reinhard J; Herzau V
    Acta Ophthalmol Scand; 2006 Feb; 84(1):124-9. PubMed ID: 16445452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated detection of foveal fixation by use of retinal birefringence scanning.
    Hunter DG; Patel SN; Guyton DL
    Appl Opt; 1999 Mar; 38(7):1273-9. PubMed ID: 18305742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Estimating squint angle according to the degree of refixation saccades. Model trial fixation saccades].
    Barry JC
    Klin Monbl Augenheilkd; 1999 Aug; 215(2):114-8. PubMed ID: 10483561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid, high-accuracy detection of strabismus and amblyopia using the pediatric vision scanner.
    Loudon SE; Rook CA; Nassif DS; Piskun NV; Hunter DG
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5043-8. PubMed ID: 21642624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three step method of the determination of fixation status and retinal correspondence.
    Davis MR; Hoffman LG
    J Am Optom Assoc; 1983 Sep; 54(9):807-9. PubMed ID: 6619483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.