These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 26213387)

  • 1. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50).
    Qureshi A; Tandon H; Kumar M
    Biopolymers; 2015 Nov; 104(6):753-63. PubMed ID: 26213387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AVPpred: collection and prediction of highly effective antiviral peptides.
    Thakur N; Qureshi A; Kumar M
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W199-204. PubMed ID: 22638580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses.
    Qureshi A; Thakur N; Tandon H; Kumar M
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D1147-53. PubMed ID: 24285301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AVCpred: an integrated web server for prediction and design of antiviral compounds.
    Qureshi A; Kaur G; Kumar M
    Chem Biol Drug Des; 2017 Jan; 89(1):74-83. PubMed ID: 27490990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction for understanding the effectiveness of antiviral peptides.
    Nath A
    Comput Biol Chem; 2021 Dec; 95():107588. PubMed ID: 34655913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Silico Approaches for the Prediction and Analysis of Antiviral Peptides: A Review.
    Charoenkwan P; Anuwongcharoen N; Nantasenamat C; Hasan MM; Shoombuatong W
    Curr Pharm Des; 2021; 27(18):2180-2188. PubMed ID: 33138759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of anti-inflammatory proteins/peptides: an insilico approach.
    Gupta S; Sharma AK; Shastri V; Madhu MK; Sharma VK
    J Transl Med; 2017 Jan; 15(1):7. PubMed ID: 28057002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VIRsiRNApred: a web server for predicting inhibition efficacy of siRNAs targeting human viruses.
    Qureshi A; Thakur N; Kumar M
    J Transl Med; 2013 Dec; 11():305. PubMed ID: 24330765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-Ebola: an initiative to predict Ebola virus inhibitors through machine learning.
    Rajput A; Kumar M
    Mol Divers; 2022 Jun; 26(3):1635-1644. PubMed ID: 34357513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Better understanding and prediction of antiviral peptides through primary and secondary structure feature importance.
    Chowdhury AS; Reehl SM; Kehn-Hall K; Bishop B; Webb-Robertson BM
    Sci Rep; 2020 Nov; 10(1):19260. PubMed ID: 33159146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SkipCPP-Pred: an improved and promising sequence-based predictor for predicting cell-penetrating peptides.
    Wei L; Tang J; Zou Q
    BMC Genomics; 2017 Oct; 18(Suppl 7):742. PubMed ID: 29513192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AVPIden: a new scheme for identification and functional prediction of antiviral peptides based on machine learning approaches.
    Pang Y; Yao L; Jhong JH; Wang Z; Lee TY
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34279599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning.
    Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J
    Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iACVP: markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model.
    Kurata H; Tsukiyama S; Manavalan B
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35772910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemoinformatics and Machine Learning Approaches for Identifying Antiviral Compounds.
    John L; Soujanya Y; Mahanta HJ; Narahari Sastry G
    Mol Inform; 2022 Apr; 41(4):e2100190. PubMed ID: 34811938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UMPred-FRL: A New Approach for Accurate Prediction of Umami Peptides Using Feature Representation Learning.
    Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Manavalan B; Shoombuatong W
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FFMAVP: a new classifier based on feature fusion and multitask learning for identifying antiviral peptides and their subclasses.
    Cao R; Hu W; Wei P; Ding Y; Bin Y; Zheng C
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37861174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepAVP-TPPred: identification of antiviral peptides using transformed image-based localized descriptors and binary tree growth algorithm.
    Ullah M; Akbar S; Raza A; Zou Q
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38710482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ENNAVIA is a novel method which employs neural networks for antiviral and anti-coronavirus activity prediction for therapeutic peptides.
    Timmons PB; Hewage CM
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34297817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.