These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou's 5-Steps Rule and Informative Physicochemical Properties. Charoenkwan P; Schaduangrat N; Nantasenamat C; Piacham T; Shoombuatong W Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31861928 [TBL] [Abstract][Full Text] [Related]
28. A two-stage computational framework for identifying antiviral peptides and their functional types based on contrastive learning and multi-feature fusion strategy. Guan J; Yao L; Xie P; Chung CR; Huang Y; Chiang YC; Lee TY Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38706321 [TBL] [Abstract][Full Text] [Related]
29. Anti-Dengue: A Machine Learning-Assisted Prediction of Small Molecule Antivirals against Dengue Virus and Implications in Drug Repurposing. Gautam S; Thakur A; Rajput A; Kumar M Viruses; 2023 Dec; 16(1):. PubMed ID: 38257744 [TBL] [Abstract][Full Text] [Related]
31. Improved prediction of anti-angiogenic peptides based on machine learning models and comprehensive features from peptide sequences. Lee YC; Yu JC; Ni K; Lin YC; Chen CT Sci Rep; 2024 Jun; 14(1):14387. PubMed ID: 38909149 [TBL] [Abstract][Full Text] [Related]
32. iBitter-Fuse: A Novel Sequence-Based Bitter Peptide Predictor by Fusing Multi-View Features. Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Lio' P; Shoombuatong W Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445663 [TBL] [Abstract][Full Text] [Related]
33. KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides. Pandey P; Patel V; George NV; Mallajosyula SS J Proteome Res; 2018 Sep; 17(9):3214-3222. PubMed ID: 30032609 [TBL] [Abstract][Full Text] [Related]
34. Structure-based prediction of protein- peptide binding regions using Random Forest. Taherzadeh G; Zhou Y; Liew AW; Yang Y Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926 [TBL] [Abstract][Full Text] [Related]
35. Use of tree-based machine learning methods to screen affinitive peptides based on docking data. Feng H; Wang F; Li N; Xu Q; Zheng G; Sun X; Hu M; Li X; Xing G; Zhang G Mol Inform; 2023 Dec; 42(12):e202300143. PubMed ID: 37696773 [TBL] [Abstract][Full Text] [Related]
37. In silico approach for predicting toxicity of peptides and proteins. Gupta S; Kapoor P; Chaudhary K; Gautam A; Kumar R; ; Raghava GP PLoS One; 2013; 8(9):e73957. PubMed ID: 24058508 [TBL] [Abstract][Full Text] [Related]
38. PIP-EL: A New Ensemble Learning Method for Improved Proinflammatory Peptide Predictions. Manavalan B; Shin TH; Kim MO; Lee G Front Immunol; 2018; 9():1783. PubMed ID: 30108593 [TBL] [Abstract][Full Text] [Related]
39. BPAGS: a web application for bacteriocin prediction via feature evaluation using alternating decision tree, genetic algorithm, and linear support vector classifier. Akhter S; Miller JH Front Bioinform; 2023; 3():1284705. PubMed ID: 38268970 [TBL] [Abstract][Full Text] [Related]
40. HemoPred: a web server for predicting the hemolytic activity of peptides. Win TS; Malik AA; Prachayasittikul V; S Wikberg JE; Nantasenamat C; Shoombuatong W Future Med Chem; 2017 Mar; 9(3):275-291. PubMed ID: 28211294 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]