These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Focal adhesion clustering drives endothelial cell morphology on patterned surfaces. Natale CF; Lafaurie-Janvore J; Ventre M; Babataheri A; Barakat AI J R Soc Interface; 2019 Sep; 16(158):20190263. PubMed ID: 31480922 [TBL] [Abstract][Full Text] [Related]
3. Investigation of size-dependent cell adhesion on nanostructured interfaces. Kuo CW; Chueh DY; Chen P J Nanobiotechnology; 2014 Dec; 12():54. PubMed ID: 25477150 [TBL] [Abstract][Full Text] [Related]
4. Nanostructuration of titania films prepared by self-assembly to affect cell adhesion. Bass JD; Belamie E; Grosso D; Boissiere C; Coradin T; Sanchez C J Biomed Mater Res A; 2010 Apr; 93(1):96-106. PubMed ID: 19536826 [TBL] [Abstract][Full Text] [Related]
5. Exploring the formation of focal adhesions on patterned surfaces using super-resolution imaging. Chien FC; Kuo CW; Yang ZH; Chueh DY; Chen P Small; 2011 Oct; 7(20):2906-13. PubMed ID: 21861294 [TBL] [Abstract][Full Text] [Related]
6. Nanopatterning of fibronectin and the influence of integrin clustering on endothelial cell spreading and proliferation. Slater JH; Frey W J Biomed Mater Res A; 2008 Oct; 87(1):176-95. PubMed ID: 18085648 [TBL] [Abstract][Full Text] [Related]
8. The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway. Seo CH; Furukawa K; Montagne K; Jeong H; Ushida T Biomaterials; 2011 Dec; 32(36):9568-75. PubMed ID: 21925729 [TBL] [Abstract][Full Text] [Related]
9. Tuning the material-cytoskeleton crosstalk via nanoconfinement of focal adhesions. Natale CF; Ventre M; Netti PA Biomaterials; 2014 Mar; 35(9):2743-51. PubMed ID: 24388800 [TBL] [Abstract][Full Text] [Related]
11. Nanoscale topography reduces fibroblast growth, focal adhesion size and migration-related gene expression on platinum surfaces. Pennisi CP; Dolatshahi-Pirouz A; Foss M; Chevallier J; Fink T; Zachar V; Besenbacher F; Yoshida K Colloids Surf B Biointerfaces; 2011 Jul; 85(2):189-97. PubMed ID: 21435850 [TBL] [Abstract][Full Text] [Related]
12. Replication of biocompatible, nanotopographic surfaces. Sun X; Hourwitz MJ; Baker EM; Schmidt BUS; Losert W; Fourkas JT Sci Rep; 2018 Jan; 8(1):564. PubMed ID: 29330498 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the growth of focal adhesions using protein nanoarrays fabricated by nanocontact printing using size tunable polymeric nanopillars. Kuo CW; Chien FC; Shiu JY; Tsai SM; Chueh DY; Hsiao YS; Yang ZH; Chen P Nanotechnology; 2011 Jul; 22(26):265302. PubMed ID: 21576808 [TBL] [Abstract][Full Text] [Related]
14. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns. Premnath P; Tavangar A; Tan B; Venkatakrishnan K Exp Cell Res; 2015 Sep; 337(1):44-52. PubMed ID: 26232686 [TBL] [Abstract][Full Text] [Related]
15. Modulation of endothelial cell migration via manipulation of adhesion site growth using nanopatterned surfaces. Slater JH; Boyce PJ; Jancaitis MP; Gaubert HE; Chang AL; Markey MK; Frey W ACS Appl Mater Interfaces; 2015 Feb; 7(7):4390-400. PubMed ID: 25625303 [TBL] [Abstract][Full Text] [Related]
16. Control of focal adhesion dynamics by material surface characteristics. Diener A; Nebe B; Lüthen F; Becker P; Beck U; Neumann HG; Rychly J Biomaterials; 2005 Feb; 26(4):383-92. PubMed ID: 15275812 [TBL] [Abstract][Full Text] [Related]
17. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Bagherifard S; Hickey DJ; de Luca AC; Malheiro VN; Markaki AE; Guagliano M; Webster TJ Biomaterials; 2015 Dec; 73():185-97. PubMed ID: 26410786 [TBL] [Abstract][Full Text] [Related]