These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 26214011)
1. Formation of Chlorination Byproducts and Their Emission Pathways in Chlorine Mediated Electro-Oxidation of Urine on Active and Nonactive Type Anodes. Zöllig H; Remmele A; Fritzsche C; Morgenroth E; Udert KM Environ Sci Technol; 2015 Sep; 49(18):11062-9. PubMed ID: 26214011 [TBL] [Abstract][Full Text] [Related]
2. Removal rates and energy demand of the electrochemical oxidation of ammonia and organic substances in real stored urine. Zöllig H; Remmele A; Morgenroth E; Udert KM Environ Sci (Camb); 2017 Mar; 3(3):480-491. PubMed ID: 33408873 [TBL] [Abstract][Full Text] [Related]
3. Treatment of synthetic urine by electrochemical oxidation using conductive-diamond anodes. Dbira S; Bensalah N; Bedoui A; Cañizares P; Rodrigo MA Environ Sci Pollut Res Int; 2015 Apr; 22(8):6176-84. PubMed ID: 25399531 [TBL] [Abstract][Full Text] [Related]
4. Generation, toxicity, and reduction of chlorinated byproducts: Overcome bottlenecks of electrochemical advanced oxidation technology to treat high chloride wastewater. Feng H; Liao X; Yang R; Chen S; Zhang Z; Tong J; Liu J; Wang X Water Res; 2023 Feb; 230():119531. PubMed ID: 36580803 [TBL] [Abstract][Full Text] [Related]
5. Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2,6-dichlorobenzamide (BAM) in chloride medium at boron doped diamond (BDD) and platinum anodes. Madsen HT; Søgaard EG; Muff J Chemosphere; 2015 Feb; 120():756-63. PubMed ID: 25465959 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH. Bagastyo AY; Batstone DJ; Kristiana I; Gernjak W; Joll C; Radjenovic J Water Res; 2012 Nov; 46(18):6104-12. PubMed ID: 22995242 [TBL] [Abstract][Full Text] [Related]
7. Pilot scale performance of the electro-oxidation of landfill leachate at boron-doped diamond anodes. Anglada A; Urtiaga A; Ortiz I Environ Sci Technol; 2009 Mar; 43(6):2035-40. PubMed ID: 19368210 [TBL] [Abstract][Full Text] [Related]
8. Combination of electro-oxidation and biological processes for lindane landfill leachate treatment: simultaneous degradation of contaminants and biological reduction of electro-generated chloride-derived by-products. De Carluccio M; Isidro J; Fernández-Cascán J; Saez C; Rodrigo MA; Rizzo L J Hazard Mater; 2024 Nov; 479():135765. PubMed ID: 39259987 [TBL] [Abstract][Full Text] [Related]
9. Oxidation of organics in water by active chlorine performed in microfluidic electrochemical reactors: a new way to improve the performances of the process. Randazzo S; Geagea A; Proietto F; Galia A; Scialdone O Chemosphere; 2024 May; 355():141855. PubMed ID: 38570051 [TBL] [Abstract][Full Text] [Related]
10. Perchlorate formation during the electro-peroxone treatment of chloride-containing water: Effects of operational parameters and control strategies. Lin Z; Yao W; Wang Y; Yu G; Deng S; Huang J; Wang B Water Res; 2016 Jan; 88():691-702. PubMed ID: 26580085 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt-IrO2, Ti/SnO2-Sb and boron-doped diamond electrodes. Bagastyo AY; Batstone DJ; Rabaey K; Radjenovic J Water Res; 2013 Jan; 47(1):242-50. PubMed ID: 23137830 [TBL] [Abstract][Full Text] [Related]
12. The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes. Bensalah N; Dbira S; Bedoui A J Environ Sci (China); 2016 Jul; 45():115-23. PubMed ID: 27372125 [TBL] [Abstract][Full Text] [Related]
13. Interpretation of high perchlorate generated during electrochemical disinfection in presence of chloride at BDD anodes. Long Y; Li H; Jin H; Ni J Chemosphere; 2021 Dec; 284():131418. PubMed ID: 34323797 [TBL] [Abstract][Full Text] [Related]
14. Formation of chlorate and perchlorate during electrochemical oxidation by Magnéli phase Ti Wang L; Wang Y; Sui Y; Lu J; Hu B; Huang Q Sci Rep; 2022 Sep; 12(1):15880. PubMed ID: 36151096 [TBL] [Abstract][Full Text] [Related]
15. Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates. Pérez G; Saiz J; Ibañez R; Urtiaga AM; Ortiz I Water Res; 2012 May; 46(8):2579-90. PubMed ID: 22386329 [TBL] [Abstract][Full Text] [Related]
16. Direct electrochemical oxidation of ammonia on graphite as a treatment option for stored source-separated urine. Zöllig H; Fritzsche C; Morgenroth E; Udert KM Water Res; 2015 Feb; 69():284-294. PubMed ID: 25497427 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical production of perchlorate as an alternative for the valorization of brines. Llanos J; Moraleda I; Sáez C; Rodrigo MA; Cañizares P Chemosphere; 2019 Apr; 220():637-643. PubMed ID: 30599321 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical oxidation of tramadol in low-salinity reverse osmosis concentrates using boron-doped diamond anodes. Lütke Eversloh C; Schulz M; Wagner M; Ternes TA Water Res; 2015 Apr; 72():293-304. PubMed ID: 25660808 [TBL] [Abstract][Full Text] [Related]
19. Effect of select organic compounds on perchlorate formation at boron-doped diamond film anodes. Donaghue A; Chaplin BP Environ Sci Technol; 2013; 47(21):12391-9. PubMed ID: 24066803 [TBL] [Abstract][Full Text] [Related]
20. Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water. Guzmán-Duque FL; Palma-Goyes RE; González I; Peñuela G; Torres-Palma RA J Hazard Mater; 2014 Aug; 278():221-6. PubMed ID: 24981674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]